Photo: Guy Williams, western Ross Sea (NBP17-04)

Antarctic sea ice monitoring to better predict the effects of climate change

Presented by: Dirk Slabber South Africa

Contents

- 1. Background
- 2. Need
- 3. Proposal overview
- 4. Implementation
- 5. Conclusion

Antarctic sea ice and its importance

- Sea ice zones are important!
 - Covers up to 10% of sea surface
 - Reflects solar rays
 - Protects Antarctic ice shelves from waves

- Undergoing a drastic change.
 - Drastic drop from previous growth
 - Predicted disappearance of ice
 - Could prelude massive climate impacts

Need for on-the-ground data

- Massive effects on global weather
 - Not very well monitored
 - Localized
 - Sporadic
- EO data and weather models rely on in-situ data samples
- Uncertainty is a killer
 - We cannot make arguments for climate change prevention and preparation with such large margins of error.

Proposal

- Network of IoT buoys floating in Antarctic sea ice zone
 - Dispersed (< 1 every 1000 km²)
 - Obtain in-situ data to supplement EO observations
 - Utilize mesh network to efficiently upload sensor data
 - Perform year-round data sampling
- Constellation in high inclination?
 - Expensive ~ thrusters
 - Less coverage
 - Will cover important upcoming geo-political and scientific regions

	Coverage (% of total time)		Average period until next flyby (hr)	
	51,6°	97°	51,7°	97°
Rome, Italy	4,4 %	2,5 %	3,3	5,5
Kinshasa, Congo	2,5 %	1,9%	6,3	7,6
lce zone (68°S, 22°E)	1,2 %	6,7 %	11	2,0
Antarctica (85°S,135°E)	0 %	10 %	NA	1,3

Ground segment

- Buoy design
 - Many challenges to implementation
 - UNISEC members with Antarctic research groups can help
 - Great opportunity for collaboration

- Downlink ground stations
 - South Africa, New Zealand, Argentina
 - Antarctica & research vessels

Implementation – South Africa as a collaborator

r 🗲

- South Africa has:
 - Universities with experience building satellites
 - World class CubeSat companies
 - Supporting government institutions
- Invite our neighbouring countries to collaborate
 - Capacity building your students will actually build the satellite
 - Foster meaningful international collaboration
 - Cheaper possible financial incentives

Conclusion

- This is an amazing opportunity.
- If we can work together, in our own countries and as a community, the only outcome can be success.
- Thank you!
- Any questions?
 - dirkslabber@gmail.com

