

Jurgen Vanhamel

Dr. (PhD) Msc. Ing. Jurgen Vanhamel

Bio:

- 46 years old
- Belgian citizen
- Assistant Professor @ TU Delft (the Netherlands), Faculty of Aerospace Engineering, Space Systems Engineering section
- Visiting Professor @ KU Leuven (Belgium), Faculty of Engineering Technology, Electronic Circuits and Systems (ECS) section
- Coach of Aether (student project: re-entry cubesat) @ KU Leuven (Belgium), Technovation hub vzw

Experience:

- Civil professor at Belgian Defence; electronics, avionics, antenna design, radar, transceivers, ...
- Electronics Engineer @ Royal Belgian Institute for Space Aeronomy (BISA) for PICASSO cubesat mission, initial design of SLP (Sweeping Langmuir Probe)
- System Engineer @ BISA for ALTIUS-mission
- Programme Manager @ BISA for EnVision VenSpec-H
- Development of NO₂-camera @ BISA (ground-based instrument)
- Development of ASPA @ BISA (ground-based instrument)
- Assistant Professor @ TU Delft
- Yearly guest lecture @ TU Berlin
- Collaborated in two space-contacts with astronaut Frank Dewinne , and one with Jasmin Moghbeli.

RF for driving AO devices and other applications

Gooch & Housego

Acoustic absorber

pattern

C

Usability

Used for remote sensing from ground/space

TUDelft

AO Setup

KU LEUVEN

ŤUDelft

Miniaturization of the RF chain for AO devices

Design RF generator/amplifier:

- Space qualified
- Flexibility
- Miniaturize (volume + mass)

TUDelft

Applications

- NO₂ instrument
- Polarized auroral emission instrument
- Solar Spectral Irradiance instrument
- SO₂ instrument

Applications

- NO₂ instrument
- Polarized auroral emission instrument
- Solar Spectral Irradiance instrument
- SO₂ instrument

Applications

- NO₂ instrument
- Polarized auroral emission instrument
- Solar Spectral Irradiance instrument
- SO₂ instrument

FPGA

Frequency

Synthesizer

1-7 GHz

Analog Devices ADF4108S

Clock

40 MHz

Active

loop

filter

1-2 GHz

VCO

1–2 GHz

KU LEUVEN

KU LEUVEN

ŤUDelft

Rigid

nosecone

Inflatable torus

Flexible TPS

material

Support column

Space Weather

Using RF signals in order to monitor the status of space weather.

- → Monitor status space- and ground-based technological infrastructure
- → Investigate specific atmospheric behavior and variations (sporadic E, layer variation, etc.)

Space Weather

Using RF signals in order to monitor the status of space weather.

Design specific instrumentation to monitor sporadic E (Delfi-PQ based approach) RABSII – Radio Amateur Beacons aboard a nanoSatellite for the Investigation of the Ionosphere

ŤUDelft

Challenges:

- Data analyses
- Signal reception \rightarrow database

KU LEUVEN