R&D for Construction on the Moon

Yoji Ishikawa Obayashi Corporation

Contents

Introduction of Obayashi Corporation

Space-related Activities

R&D for the Moon and Mars

Current Topics

Contents

Introduction of Obayashi Corporation

Space-related Activities

R&D for the Moon and Mars

Current Topics

One of the Largest Construction Companies in Japan

✓ Establishment:
✓ Number of employees:
✓ Overseas offices:
✓ Net Sales:

1892 15,876 14 Offices 20 billion USD (FY2022)

Projects in Japan

Tokyo Central Station

Kansai International Airport

Overseas Projects

@2024 Obayashi Corporation

Stadium Australia

Hoover Dam Bypass Project - Colorado River Bridge

San Francisco General Hospital

Contents

Introduction of Obayashi Corporation

Space-related Activities

R&D for the Moon and Mars

Current Topics

Obayashi Future Lab

✓ Space, biotech, energy, mobility, and advanced construction

- ✓ Long-term future business seeds
- Open innovation

10,000 residents 2,000 visitors in 2050

Lunar City 2050

(1987)

Obayashi's Space – Main Themes

✓ Go to space

✓ Live in space

✓ Use the space

Go to Space

Space elevator

Airborne rocket launch

©Astrocean, Chiba Institute of Technology Sea launch

Go to Space – Space Elevator

 $10 \ \mu \,\mathrm{m}$

- Carbon Nanotube Space Environment Exposure Experiment

- International Space Station Japanese Module "Kibo" Exposed Facility

- Starting May 2015 (Duration 1 and 2 yrs)


```
©2024 Obayashi Corporation
```


Space Elevator Challenge, Japan Space Elevator Association

Cable Dynamics of Space Elevator

Space Environments

©2024 Obayashi Corporation

Live in Space

Lunar & Martian bases Compact agriculture

Robotic construction

Live in Space – Material and structure

- Construction material manufacturing from local regolith simulant
- ✓ Inflatable structure
- Unfolding "Origami" structure

Use the Space

- Automatic & remote-control operation of construction machine using GNSS (global navigation satellite system)
- Automatic transportation of concrete at a dam site
- Survey and ground deformation monitoring

Contents

Introduction of Obayashi Corporation

Space-related Activities

R&D for the Moon and Mars

Current Topics

R&D Subjects for the Moon

R&D Subjects for Mars

Structure for the Moon

Lunar Shelter (expandable structure)

- **Garage for rover**
- Multi-purpose \checkmark
- Passive heat control

©OUTSENSE

©OUTSENSE

Structure for the Moon

Inflatable Structure (expandable structure)

Protection of people and devices from severe environment

Structure for the Moon

Inflatable Structure (expandable structure)

Mini-scale test of inflation
 Multi-torus shape is most stable

Construction Material for the Moon

Local manufacturing for local use

Microwave sintering

Lunar Soil Simulant

Sintered Product

Fused Product

Construction for the Moon

3D printers to make composite cement structure

✓ Robotic

- ✓ Automatic
- ✓ Remote-Control
- ✓ Autonomous

Obayashi's 3D Printed Structure

Construction for the Moon

Construction for the Moon

Remote control of construction machine using 5G

Construction for the Moon

Haptic technology to manipulate construction machine

Verification with Hydraulic Construction Machine Glove-type Controller

Agriculture for the Moon

Plant cultivation using lunar simulant

- Soil made from microorganism and lunar simulant porous material
- ✓ Mustard spinach grows healthily.

Increase of nitrate nitrogen

Simulated facility for the Moon

Moon park concept

Facility for research, training, and education
 Jointly proposed with Prof. Kuriki (ISAS)

Construction Material for Mars

Local manufacturing for local use

 Cold press method using igneous rock, clay mineral, and water which are supposed to exist on Mars

Martian simulant

Simulant in mold

Molded block

Construction for Mars

Construction of initial Mars base

Excavation, leveling, and pipe laying
 Joint research with NASA and Stanford University

Facility	Work	
Common Facilities	- Prepare roads	
Rigid Habitat Module	- Prepare the emplacement location	
	- Move the module	
	- Install the module	
	- Cover the module with soil	
Inflatable Habitat Module	- Prepare the emplacement location	
	- Install supports (anchors)	
	- Raise a center post	
	- Install exterior and interior	
·	- Inflate	
~ .	- Cover with bagged soil	
Greenhouse	- Prepare the emplacement location	
	- Move equipment to site	
	- Instal and inflate	
Nuclear Power Source	- Prepare the emplacement location	
	- Move equipment to site	
	- Instal equipment	
	- Construct soil shield wall	
Solar Panel	- Prepare the emplacement location	
	- Move the arrays	
	- Instal the arrays	

Equipment name and picture	Tasks
Dragline	 suitable for working in a broad area possible to excavate underwater good for excavating at a level lower than the machine level not good for excavating firm soil not good for accurate work
Clamshell	 suitable for working in a broad area, especially suitable for excavating in a deep narrow hole
Backhoe	 suitable for excavating at a level lower than the machine level good for excavating firm soil good for accurate work
Shared	 suitable for excavating at a level higher than the machine level good for excavating firm soil good for accurate work
Shovel	

Contents

Introduction of Obayashi Corporation

Space-related Activities

R&D for the Moon and Mars

Current Topics

Current Topics

- ✓ Strategic Program for Accelerating Research, Development and Utilization of Space Technology (Stardust Program) (from 2021)
- Government research fund to develop technologies for Lunar development

Construction Material (Stardust Program)

Method

- Microwave heating of regolith
- Laser heating of regolith
 - No material to be imported from the Earth

Application

- Pavement material for transportation road
- ✓ Pavement material for takeoff/landing area of rockets
- ✓ Protection material of residential facilities

Construction Material (Stardust Program)

Microwave heating

 Sintering successful both in air and vacuum
 Both compressive and flexural strengths strong enough for the applications

Specimens for test

Strength test

Construction Material (Stardust Program)

Laser heating

- Direct Energy Deposition (DED) Method
 - 3D printer
 - 6-axis driven robot arm
- Both compressive and flexural strengths strong enough for the protection of residential facilities

3D printer

Robot arm

Energy (Stardust Program)

Solar power generation in the polar region

- Recommendation based on the study
 - Tower-type solar power generator
 - Single-axis or polyhedral shape Sun-tracking system
 - Limit the operation and activities only to the sunshine period to reduce the total system mass, since the storage battery mass is dominant in the total mass.

Energy and Structure (Stardust Program)

Lunar expandable power generation tower in the polar region

It was found that:

- In the lunar south polar region (85 to 90 degree), a tower of more than 10 meters high is required.
- An expandable structure is preferred.
- On average, 80 % of the time, solar energy can be acquired.

Lunar tower (12 m high)

Energy and Structure (Stardust Program)

1/6 Breadboard Model (BBM) of Expandable Lunar Tower

Thin-film solar cell

Breadboard model 2 m high (1/6 size)

Acknowledgements

Sea launch

Astrocean Chiba Institute of Technology Space exposure of carbon nanotube Shizuoka University Japan Manned Space Systems Corporation **Space elevator climber** Shonan Institute of Technology Effect of lightning on space elevator **University of Shizuoka** Otowa Electric CO., LTD. Cable dynamics of space elevator Shizuoka University

Lunar Shelter **Outsense Inc.** Construction KDDI **Keio University Lunar Agriculture** Towing **Space foodsphere Ministry of Agriculture, Forestry and Fisheries** Moon Park Prof. Kyoichi Kuriki (ISAS)

Acknowledgements

Construction for Mars

NASA Stanford University Construction Material Nagoya Institute of Technology Institute for Laser Technology Ministry of Land, Infrastructure, Transport and Tourism

JAXA Space Exploration Innovation Hub Center Lunar expandable tower JAXA Sakase Adtec CO., LTD. Muroran Institute of Technology Ministry of Land, Infrastructure, Transport and Tourism Power generation on the Moon Sharp Corporation Ministry of Economy, Trade and Industry

OBAYASHI

