24th UNISEC-Global Meeting Space Synergy: Opening avenues for the academe, industry, and local and international partnerships

Towards development of satellite payloads in the Philippines

Presented by: Paul Leonard Atchong C. Hilario, Ph.D.

Space Science and Techonology Applications Researcher, Spacecraft Payload and Communications Systems Development Division Space Technology Missions & Systems Bureau Philippine Space Agency

August 20, 2022

What is this about?

- Story of payload development in the Philippines
 - The story of DIWATA cameras
 - Inspiration in building cameras locally
 - Role of the industry
- Lessons learned
- Moving forward

Philippine's first earth observation microsatellite

PhilSA

Philippine's first earth observation microsatellite

The payload is one of the two main components of a satellite

• Payloads enable the satellite to perform it's mission

Payloads are components of the spacecraft that enable it to perform its mission

- Payloads vary depending on the needs of the mission
 - Telecommunications: transceivers
 - Earth observation: optoelectronic/radar
 - Technology demonstration: test models
 - Rocket test launch: dummy mass
- Must be carefully crafted to avoid under- and/or overdesigning
 - Mission Requirements
 - Constraints (Technical and logistical)
 - Dependencies

DIWATA payloads

DIWATA Communication payloads

DIWATA is an optical earth observation microsatellite

- Payloads are optoelectronic cameras (aka digital cameras)
- Uses the visible (VIS), ultraviolet (UV), and infrared wavelengths (IR) of the electromagnetic spectrum
- Designed to capture spatial and spectral information about the earth

Designation of the radiation		04/430554dcc/iso-204/3-2007 Spectral bands ^a						
		Short designation			Wavelength	Frequency	Wavenumber	Photon energy
					٦	ν	σ	Q_{e}
					nm	THz	cm ⁻¹	eV
Ultraviolet radiation	extreme UV	UV		EUV	1 to 100	3×10^5 to 3 000	10 ⁷ to 10 ⁵	1 240 to 12,4
	vacuum UV		UV-C	VUV	100 to 190	3 000 to 1 580	10 ⁵ to 53 000	12,4 to 6,5
	deep UV			DUV	190 to 280	1 580 to 1 070	53 000 to 36 000	6,5 to 4,4
	mid UV		UV-B		280 to 315	1 070 to 950	36 000 to 32 000	4,4 to 3,9
	near UV		UV-A ^b		315 to 380	950 to 790	32 000 to 26 000	3,9 to 3,3
Visible radiation, light		VIS			380 to 780	790 to 385	26 000 to 13 000	3,3 to 1,6
Infrared radiation	near IR	IR	IR-A	NIR	780 to 1400	385 to 215	13 000 to 7 000	1,6 to 0,9
			IR-B		1 400 to 3 000	215 to 100	7 000 to 3 300	0,9 to 0,4
	mid IR		IR-C	MIR	3 000 to 50 000	100 to 6	3 300 to 200	0,4 to 0,025
	far IR			FIR	50 000 to 10 ⁶	6 to 0,3	200 to 10	0,025 to 0,001

Table 1 — Spectral bands for optics and photonics

^a The wavelength values are valid for delimitation of the spectral bands. The values for frequencies, wave numbers and photon energies are approximate values given for convenience.

^b For other fields of application, which are excluded from the scope of this International Standard, there may be different definitions. For example, IEC 60050-845:1987, identical with CIE Publication No 17.4, for its purpose, defines the upper limit of the UV-A band as 400 nm (see also Annex A).

An image records light-matter interaction

What are we trying to detect?

http://www.senieksystems.com/wp-content/uploads/zutorizplantstructure-aetail.trpng Wollard, James (2017). Improving the Simulation of Carbonaceous Aerosol in HadGEM3-UKCA. 10.13140/RG.2.2.28820.55682. //ttc://www.senmedia.info/sciences/J_G/envrad/microwaves/v1.oif

Remote sensing instrument

RS data products

How did we start developing satellites?

- Started in September 2014 with the Sakura Science Plan
- A series of activities:
 - Satellite Application lectures
 - Lab tours in Hokkaido and Tohoku Universities
 - Industry tours (Mitsubishi Heavy Industries)
- A mission planning session
 - Identified the requirements
 - Identified the main features of the payload
 - Discussion on possible launch opportunities for the satellite

For us it is something new and we are very eager to try

- PH delegates consists of a very diverse team of scientists and engineers
 - Electronics and communication engineers
 - Mechanical Engineers
 - Geodetic engineer
 - Environmental scientist
 - Physicists
- No PH delegate has experience in developing space technologies

PHL-Microsat is a collaborative R&D endeavor

However there is a limitation to PHL-Microsat

A noticeable gap in the previous phase is the lack of a component project that focuses on payload development

STAMINA4Space took over PHL-Microsat

Payload development became a focus of satellite development in the Philippines

Objectives of Project OPTIKAL

Research and Development

Capacity Building

RI. Define mission and technical specification of the primary payload

R2. Collaborate with International partners in the design, development, and testing of a multispectral

payload

R3. Locally design, develop, and test optical payload for aircraft or satellite platform

Calibrate and validate the developed optical payloads **C1. Establish** an optical payload laboratory

Produce highly trained personnel in optical payload design and development

C3. Knowledge proliferation in optical design and development

atory **F**

Payload development is identified as a critical component of satellite development

OPTIKAL will be spearheading the satellite payload development in the country and will follow a roadmap towards a *payload development-capable nation*.

A good collaborator is T-shaped

A good collaborator is T-shaped

Activities of OPTIKAL

We realized that the industry is an important player of development

International Collaboration Activities

Mission Definition and Technical Specification

Defining the mission of the primary payload

Data gathering and building of spectral library

Designation of band edges and imaging simulation

Summary of local activities

What is the role of the industry?

Some challenges

- There are no optical design companies in the Philippines
- Philippine universities are good in optical science but we have no experience is optical engineering
- Resolution: We learned optical engineering from trainings online

Our development strategies

Occena, D. J.; Bernabe, R.; Alampay, M. J.; Hernandez, A.; Madalipay, J. C.; Hilario, P. L.; Soriano, M.: 'A localized spaceborne camera for nano- and micro-satellite platforms', IET Conference Proceedings, 2021, p. 253-257, DOI: 10.1049/icp.2022.0581IET Digital Library, https://digital-library.theiet.org/content/conferences/10.1049/icp.2022,0581

28

After working hard...

Multi-Application Linear Camera Monochromatic and Tri-linear Array (MALICMATA)

Panchromatic Camera

Some notes

- Industry has practices
 - Fixed schedules
 - Profit oriented
 - Documentations like Scopes of works, etc.
- We needed to adopt our procurement process
- We also needed to communicate them the needs very clearly
 - Apply the scientific method
 - Practice good scientific communication
 - Constant discussions and communications
- Academe can absorb some risks

Payloads under development

- Multispectral Unit for Land Assessment
- Operational Earth Observation
- Payloads
 - 9 band multispectral imager
 - Automatic Identification System (AIS)
 - Automatic Dependent Surveillance -Broadcast (ADS-B)

Adrian

Salces

Romer Kristi Aranas Shielo Namuco-Muta

Keziah

Bartilad

Summary

- Payload development is a collaborative process
- For the Philippines:
 - Payload being developed completely abroad
 - Partial developed operations payload
 - Specs from Philippines
 - Development in Japan
 - Fully developed small cameras through OPTIKAL
- We are at an early phase we are gaining more experience as we go about our satellite development programs
- We recognize that developing the Philippine's local space capability will be made possible by the synergy between government, academe, and industry

Acknowledgement

The Space Technology Acquisition, Mastery, Innovation and Applications (STAMINA4Space) Program's Optical Payload Technology In-Depth Knowledge Acquisition and Localization (OPTIKAL) is funded by the Department of Science and Technology (DOST) through the DOST Grants-in-Aid (GIA).

Contact us

https://twitter.com/philspaceagency

(O) https://www.instagram.com/philspaceagency/

https://www.linkedin.com/company/philspaceagency/

https://philsa.gov.ph/

24th UNISEC-Global Meeting

Space Synergy: Opening avenues for the academe, industry, and local and international partnerships

Thank you.