Introduction to PreMIC8 Workshop

Constellation and Formation Flying Mission Design

Why Constellation is Required ?

LEO (500-800km alt.) Almost all remote sensing sat.

- High spatial resolution 0.3m 30m
- Time resolution is several 40 days
- Several hundreds sats required for less than 1 hour time resolution

Constellation of many LEO satellites

GEO (36000km alt.) Himawari and a few satellites.

- Low spatial resolution (18m 2 km)
- Continuous monitoring possible
- High time resolution achieved by
 - quick scanning (even 10 minutes)

	Com	nerc	<mark>ial Pro</mark>	<mark>ogram o</mark>	of Con	stellations for (<mark>Commur</mark>	nication
Operator	Country	Band*/ orbit	Size**	Capacity	Lifetime	Target markets	Status	
SES ^A	U.K.	Ka- MEO	7-22	200+ Gbps per satellite	> 10 years	Trunking, backhaul, Enterprise, Civil Govt., Military, Mobility (primarily maritime)	Development (contracted)	"Big GEO satellites" and "LEO constella- tion" PNT (Position Navigation and Time is one of key data
SPACEX	U.S.A.	Ku- LEO	Up to 4000	20 Gbps per satellite	~5 years	Consumer broadband, Enterprise, Backhaul, Military, Commercial Aviation	Deployment	
TELESAT	Canada	Ka- LEO	292	-40-50 Gbps per satellite	10 years	Backhaul, Enterprise, Civil Govt., Mobility, Military	Development (uncontracted)	
amazon	U.S.A.	Ka- LEO	3236	NA	7 years	Consumer, Enterprise, Backhaul, Civil Govt., Mobility	Development	
O OneWeb	U.K.	Ku- LEO	648	7.5 Gbps per satellite	7 years	Enterprise, backhaul, Civil Govt., Aero, Maritime, Military	Deployment	
Viasat	U.S.A./ NED	Ka- LEO	288	100 Gbps per satellite	N/A	Consumer, Enterprise, Civil Govt., Aero, Military	Planning (uncontracted)	
AST	U.S.A./ PNG	LTE- LEO	243	N/A	N/A	Consumer/Enterprise (Mobile Network Operators)	Development (in- house)	
MANGATA	U.S.A.	Ka-/V- MEO/HEO	up to 800	75-100 Gbps per satellite	N/A	Backhaul, mobility, enterprise, IoT	Planning	
Hongyun (CASIC)	China	Ka- LEO	156	<5 Gbps per satellite	N/A	Consumer, enterprise, backhaul, mobility, satnav, EO	Development	
Hongyan (CASC)	China	Ka-/L- LEO	320-864	10 Gbps per satellite	N/A	Consumer, backhaul, enterprise, IoT	Development	
Galaxy Space	China	Q-/V- LEO	144-650	10 Gbps per satellite	N/A	Consumer, backhaul, enterprise, civil govt.	Planning	

Merits of Constellations for various missions

- Earth observation
 - Improving "time resolution" (more frequent observation)
 - Resilience (robust against satellite damages/loss)
 - Quick data downlink by multiple satellite cross-links
- Communication
 - Connecting all over the world by multiple cross-links
 - Strong merits as to RF power requirement and latency
- Navigation (PNT:Positioning, Navigation and Time)
 - Received power can be stronger (may use in-house)
 - Quick convergence of precise positioning if many moving satellites can be seen from ground
- Quantity of developed satellites and iterations will be huge, then....

Merit of Large Number of Iterations

Compounding of R (value)

$$R = (1 + Y)^{t}$$

- Y: Improvement at one iteration
- t: How many iteration you can take

"If things are not failing, you are not innovating enough" 「失敗していないとすれば、イノベーションを起こしていないということだ」(イーロン・マスク)

Design Issues in Constellation

- Finding clear objective to use "constellation"
- Design of Revisit Interval
 - Mission will decide the required interval (1hr, 1day,---)
 - which decides the number of satellites and their orbital planes, heights, satellite phases (positions) in each orbit, etc...
 - Tradeoff of the number of satellites and total cost
- Consideration of latency of data-link
 - Mission will decide permissible latency
 - which decides the number and positions of ground stations
 - Option: GEO satellite link or inter-satellites cross link used ?
- Design of satellites themselves
 - Heterogeneous or Homogeneous ?
 - Additional design for cross-link or constellation operation

Government Earth Observation Program

Other Ministries' Program GOSAT Series: Greenhouse Gas Himawari Series: Meteorological GCOM: Water and particles ASNARO-1: Optical (450kg,0.5m) ASNARO-2: X-band SAR(570kg,1m)

Constellation Required for Disaster Prevention and Mitigation (P&M)

Satellite performance required for Disaster (P&M)

areas should be delivered with interval of 3-6 hours

- The first information on disaster areas should be delivered at least before 12 hours

To find out where to send rescue teams

- After that, periodically the information of the specific
- To monitor the area after disastor All weather, 24 hours information is important
- ©.IAXA
- SAR satellites with large swath (200km) would be • attractive, but only one satellite (such as ALOS-4 alone) is not enough to obtain high responsiveness and time resolution (<12 hours)
- Constellation is needed to obtain frequent observations
 - "finding out" can be done by government sat + small sat constellation
 - "monitoring" can be done by buying small sat constellation

"Formation Flying (FF)"

Formation Flying (FF) of spacecraft:

- Technology for coordinated control of multiple spacecraft flying near to each other
- May realize high level astronomical / Earth observation missions that would not be possible with a single spacecraft
- Suitable for micro/nano/pico-satellites as their capability as one satellite is limited but want to realize high level mission.

Earth Observation

Astronomy, Astrophysics

Various Accuracy Levels of FF Missions

- The relative position control accuracy of cm~m was achieved in 2014 by CanX-4&5 (1U, with inter S/C distance of about 100 m).
- mm-class FF missions are ongoing (e.g., PROBA-3).
- Higher accuracy (µm mm) will make interferometer or synthetic aperture missions possible
- Low accuracy (cm m level) formation flying still have some useful missions

Example of Scientific Missions Using Two Satellites Straight Line Formation

"Straight Line Formation" Missions

- Starshade Mission
 - New exoplanet observation method
 - The light of a star is blocked by an occulter satellite
 - Exoplanet around the star can be observed by a telescope satellite directly
 - Example of Earth orbit starshede missions: mDOT, Euryops

X-ray telescope/interferometer

- Target: High energy (= high temperature) objects such as black holes
- Due to the property of X-rays, it is necessary to make the telescope longer in order to obtain higher resolution
- \rightarrow Formation flying is needed!
- Example of Earth orbit X-ray missions: VTXO (telescope), MIXIM (interferometer)

How to keep the straight line formation and how to change from one to another line direction for multiple targets ?

Usages of Formation Flying

- Interferometric observation
 - Accurate estimation of direction of incoming light / RF
 - Improving resolution

Long baseline is required

"lens" or "occulter" sat

difference

- Realizing long focal length
 - X-ray telescope "detector" sat
 - "Starshade" to occult main star
 light to observe surrounding planets directly
- Synthetic Aperture Telescope
 - Virtually realize large aperture telescope by using multiple "mirror satellites"
- Simultaneous observations at many points
 - Particles, magnetic field, gravity, electric potential,

Design Issues in Formation Flying

- Find clear objective to use "Formation Flying"
- Define mission requirements
 - accuracy, observation duration, aperture size,
 - satellite quantity, position distributions, sensors,
- Define shape and accuracy of formation
 - planer formation, straight line formation, curt-wheel,
 - required position/attitude accuracy, change direction,
- How to realize/keep the required formation
 - how to estimate/control relative position and attitude with required accuracy (sometimes, mm – μm accuracy required)
 - how to change the direction of formation
 - how to keep the orbits of satellites with minimum ΔV
- Usual design of satellites

Example: Various Sensors/actuators for FF - How to combine them to realize high accuracy? -

At "Pre-Mic 8" in Istanbul.....

- We will provide a mini-lecture (workshop) on how to design constellation or formation flying missions
 - assuming certain missions
 - constellation of Earth observation satellites (TBD)
 - formation flying of interferometric observation (TBD)
- Join us at UNISEC-GLOBAL Meeting in Turkey to be held in this October !