

PARS: PRECURSOR ASTEROID REMOTE SURVEY

PARS TEAM

Batu CANDAN METU

Sahin Ulas KOPRUCU METU

Cansu YILDIRIM METU

Sefa CENGIZ METU

Derya SARMISAK METU

Semra Sultan UZUN METU

Logo Design: Murat Berke Oktay (MBO)

Mehmet ESIT

Sirin YAKUPOGLU ITU

OUTLINE

- 1. Introduction
- 2. Mission Objectives
- 3. Concept of Operations
- 4. Scientific Observations & Outcomes
- 5. Key Performance Parameters
- 6. Spacecraft Design & Project Timeline

MOTIVATIONS

Preliminary research about asteroid Apophis which is a suitable target for a low-cost technology demonstration

First time detection of seismic effects of Earth flyby from orbit which might lead to a fundamental discovery with a low-cost micro-satellite

The first time in space, use of Laser Doppler Vibrometer

Contribution to the future space economy and asteroid deflection missions through enabling low-cost asteroid exploration

Raising awareness of space science and technology in Turkey

WHY APOPHIS?

Close approach on April 13, 2029

- Near Earth Asteroid (NEO)
- Small shape and size
- Seismic activity and tidal effect
- No enough information about morphology

Easy to reach with a low-cost mission

Expected to be affected by Earth flyby

Unique oppurtunity to test LDV / the first orbital seismometry concept

Reference images and data for the future landers to be utilized for a potential deflection mission

MISSION OBJECTIVES

Scientific

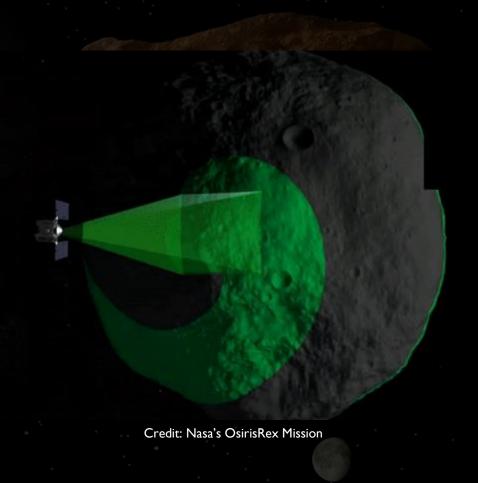
- 1. Apophis Shape & Surface Determination
- 2. Understanding the Tidal Force Effects

Technology Demonstration

Fly-By Vibration Measurement with a single LDV

Social

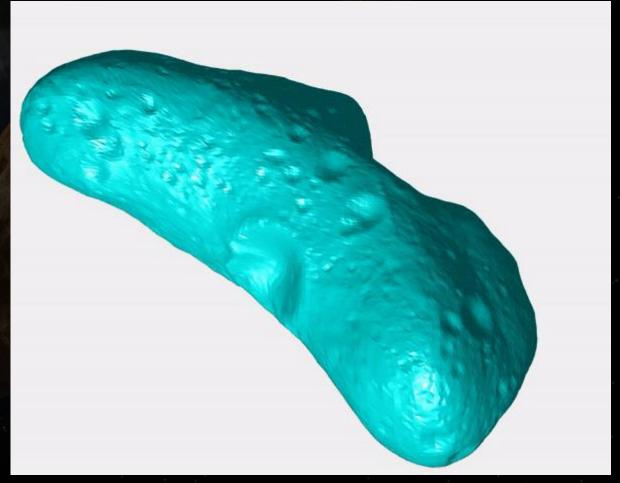
Attracting Interest on Space Studies



Scientific Objectives

Apophis Shape & Surface Determination

- Requirement: Characterize Apophis' shape and surface topography.
- Purpose: To improve the surface and shape information of the Apophis via 2U LIDAR concept.
- Techniques: Utilizing LIDAR measurements and high-resolution camera images.

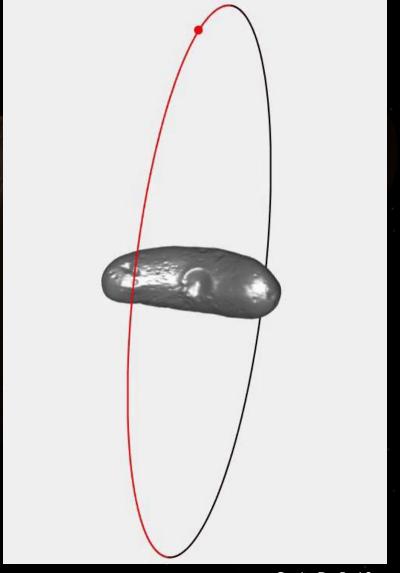


Scientific Objectives

Understanding the Tidal Force Effects

- Requirement: Investigate/Observe Apophis' surface during the pre-flyby during and post-flyby
- Purpose: To understand tidal force effects on the asteroid during the close encounter
- Techniques: Utilizing LIDAR measurements and high-resolution camera images.

Credit: Dr. Paul Sava



Technology Demonstration Objectives

Fly-By Vibration Measurement with a single LDV

- Requirement: Measuring the magnitude of seismic vibrations due to tidal forces on the Apophis during pre-flyby, flyby and post-flyby
- Purpose: To understand whether tidal force vibration can be measured by LDV
- Techniques: Utilizing LDV and comparison of the data obtained at flyby and pre/post-flyby.

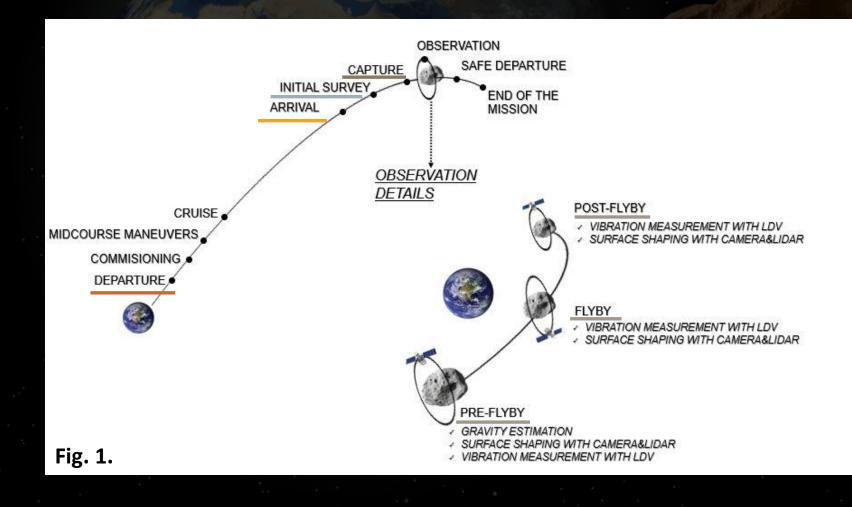
Credit: Dr. Paul Sava

Attracting Interest on Space Studies

Social Objectives

- The proposed project can be carried out in cooperation with space agencies and universities to raise awareness of the space science and exploration.
- Especially in Turkey, these kind of projects can motivate lots of young people and children and foster the interest in space exploration and science.
- Proving that high impact scientific space missions is possible with low-cost microsatellite and capacity building in Turkey for qualified human resource development.

4 QUALITY EDUCATION


9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

Credit: United Nations

CONCEPT OF OPERATIONS, MISSION DESIGN AND EXPERIMENTAL CONCEPT: CONOPS DIAGRAM

	DATE/DURATION
DEPARTURE	20.04.2028
ARRIVAL	08.03.2029
INITIAL SURVEY	30 DAYS
CAPTURE	07.04.2029
PRE-FLYBY OBSERVATION	5 DAYS
FLYBY OBSERVATION	3 DAYS
POST-FLYBY OBSERVATION	5 DAYS

ΔV AND TOF VERSUS ARRIVAL DATE

260 Departure 240

Fig. 2.

- Lambert algorithm is used.
- Different departure and arrival dates are examined.
- Optimum departure date is determined for the chosen arrival/rendezvous date.

LAUNCH, CRUISE AND ARRIVAL PHASE

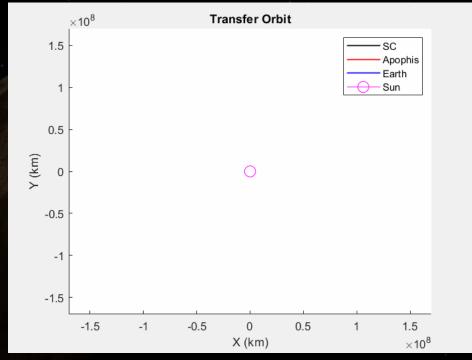


Fig. 3.

- Gravity of Sun and planets, solar radiation pressure, relativistic correction are considered.
- Transfer duration is 322 days.
- Rendezvous at 20 km distance.

INITIAL SURVEY PHASE

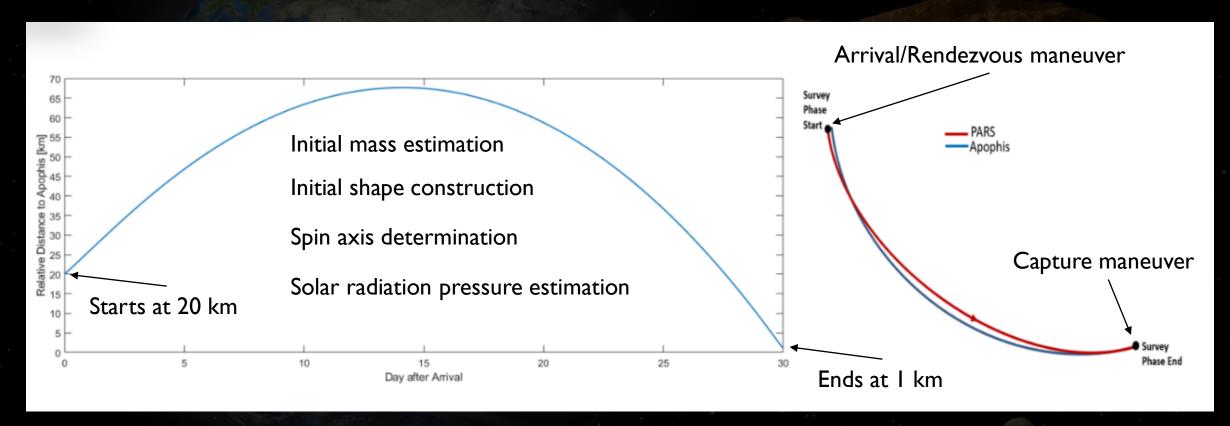


Fig. 4.

PRECURSOR ASTEROID REPORTS

MISSION ORBIT

- I km circular polar orbit.
- Orbital period is 1.7 days.
- Rotational period of Apophis 1.3 days

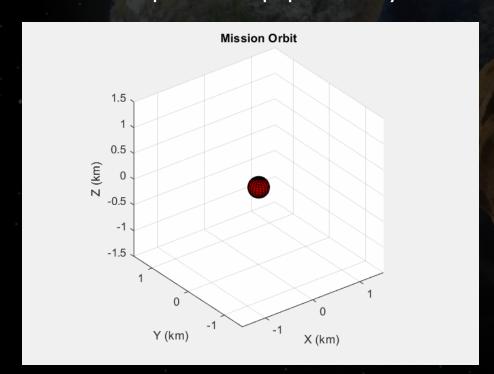
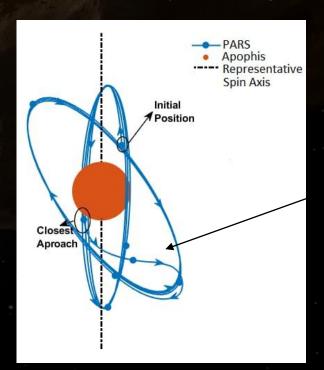



Fig. 5.

- Eclipse occurs 3 times during the mission orbit.
- Longest eclipse duration is 2.3 hours.
- Safe mode (Minimum power consumption), battery

- Change in the orbit due to gravity of Earth during the closest approach
- Station keeping is highly important!

SCIENTIFIC OBSERVATIONS

POST-FLYBY (2029/04/15-2029/04/20)

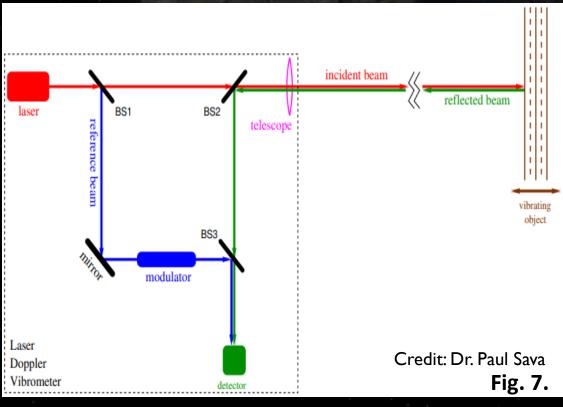
- LDV will keep taking measurements
- Expected decrease in vibrations
- Detailed shape construction
- Station keeping maneuvers

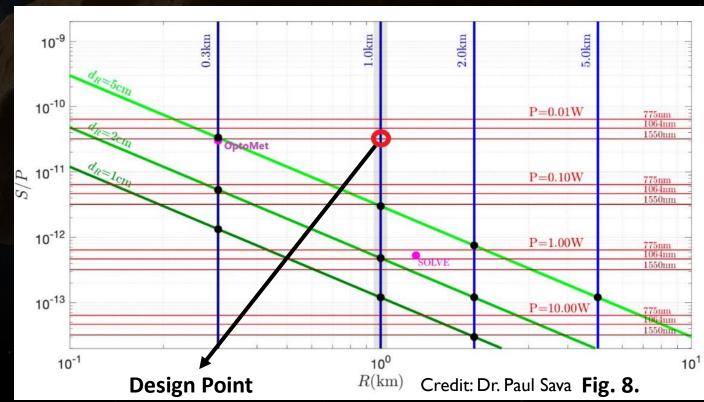
PRE-FLYBY (2029/04/07-2029/04/12)

- First time in space, LDV will work
- Reference measurements
- Precise mass estimation
- Detailed shape construction
- Station keeping maneuvers

FLYBY (2029/04/12-2029/04/15)

- Inside the Earth's Sphere of Influence
- LDV will keep taking measurements
- Expected increase in vibrations
- Detailed shape construction
- Station keeping maneuvers


KEY PERFORMANCE PARAMETERS LASER DOPPLER VIBROMETER (LDV)


LDV Lens Diameter

LDV Required Power

LDV Mass

LDV Dimensions



SPACECRAFT SYSTEM OVERVIEW

- 50cm x 50cm x 50cm size with 2 foldable solar arrays
- 91.266 kg launch mass and 45.852 kg dry mass
- Payloads
 - LDV, Optical Camera and LIDAR
- ADCS (3 axis control with 0.02° accuracy)
 - 6-Sun sensors, Star tracker, IMU
 - 4-reaction wheels, 8-attitude thrusters
- High Performance Green Propulsion System
- Power
 - ~350W power generation
 - 125Wh Li-ion Battery

• Estimated Cost: 35M\$

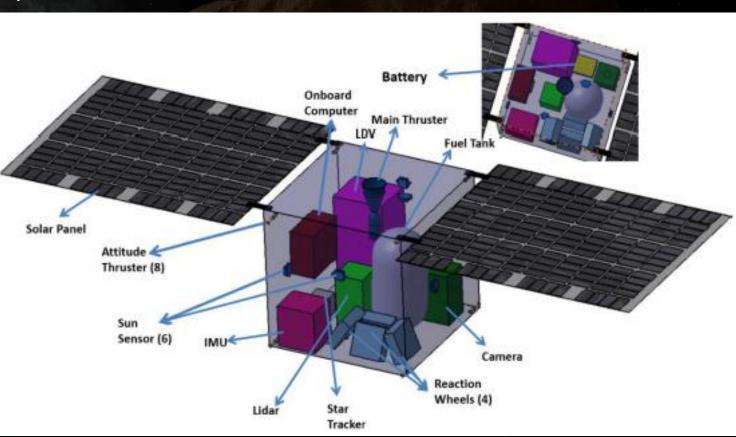


Fig. 9.

MISSION RISKS

PAYLOAD FAILURE

Potential effects

Lowers the scientific outcomes of the mission

Mitigation strategy

Careful testing of LIDAR and LDV Using a flight proven LIDAR (e.g. HAYABUSA2) to increase reliability

MAIN THRUSTER FAILURE

Potential effects

Not arriving Apophis at desired time, crashing to Apophis, leaving the mission

Mitigation strategy

Orbit maneuver by attitude thrusters if main thruster fails.

GANTT CHART

Will and the second			نسا							150											ly o			Was !	760		7								
Project Plan (Gantt Chart)																																			
Dhasas and Timeline		202	21			202	2		2	023		2024			2025			2026			2027				2028				2029						
Phases and Timeline	Q1	Q2	Q3	Q4	Q1	Q2 C	Q3 (Q4 Q	1 Q	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Elapsed Months	3	6	9	12	15	18 2	21 2	24 2	7 30	33	36	39	42	45	48	51	54	57	60	63	66	69	72	75	78	81	84	87	90	93	96	99	##	##	##
Concept Development and Fund Raising		Conc	eptu	ıal D	esign	and F	undi	ing																											
Design and Technology Development					Pi	relimi Desig			Equip	ment	and 1	Techr	nolog	y Qu	alific	ation	ns																		
Component/Equipment Acquisition and Test									EI	M Con	npone	ents							FM	Com	pone	ents													
Engineering Model (EM) Development and To									floor	I,		EM	Integ	ratio	on an	d Te	sts																		
Flight Model (FM) Delveopment and Tests						quiren y Desi										FM Integration and Tests																			
Spacecraft Delivery & Launch Operations		CD	R: C	ritica	al Des	sign Re Readi	eviev	w																											
Primary Mission Operations		FRR: Flight Readiness Review PFAR: Post Flight Assessment Review					,													LEC	OP &	Miss	ssion Ops												
Extended Mission Operations							\perp	\perp	L	T																									

LIDAR

Deep space

Surface shape

> Laser Doppler vibrometry

Micro sized satellite

Low-cost precursor asteroid exploration mission

Survey

Asteroid

High resolution camera

activity from orbit

Seismic

So Long and Thanks for All the Fish

Pars Team Advisors

BurakYAGLIOGLU

H. Ersin SOKEN

APPEND

)	>		

SUBSYSTE AN **POWER I**

MS MASS ID BUDGET	

Payload
Fibertek 2U LIDAR
Simera TriScape100 Camera
Optomet NOVA SWIR LDV
Power Systems
ABSL Li-Ion Battery
2 × DHV Solar Panel
ADCS Systems
4 × Blue Canyon RWI
Innalabs Polaris IMU
Adcole Space Star Tracker
6 × Solar MEMS Sun Sensor
8 × Bradford I00mN Thruster
Bradford 22N Thruster
HPGP Propellant Budget
Comm. & Data Handling

Instruments and Equipments

4 × Blue Canyon RW I
Innalabs Polaris IMU
Adcole Space Star Tracker
6 × Solar MEMS Sun Sensor
8 × Bradford I00mN Thruster
Bradford 22N Thruster
HPGP Propellant Budget
Comm. & Data Handling
PROCYON's Transponder
SOI CPU On-Board
Computer*
Structure Margin

1.2	0.098×0.098×0.
11.6	0.380×0.180×0.
0.98	0.098×0.086×0.
6	0.85×0.70
3 (4 Reaction Wheels)	0.11x0.11x0.0
2	0.112×0.132×0.
0.282	0.055×0.065×0.
0.150	0.040×0.030×0.
0.32	Length: 0.05
1.1	Length: 0.26
45.414	
6.60	N/A
1.62	0.156×0.153×0.

Mass (kg)

2

9

0.098×0.098×0.176	
0.380×0.180×0.148	
0.098×0.086×0.060	
0.85×0.70	
0.11×0.11×0.038	
0.112×0.132×0.145	
0.055×0.065×0.070	
0.040×0.030×0.012	
Length: 0.055	
Length: 0.26	
N/A	
0 156×0 153×0 085	

Size (mxmxm)

0.1x0.1x0.2

Power Consumption

(W)

14.3

6

27

N/A

N/A

9 (each)

10

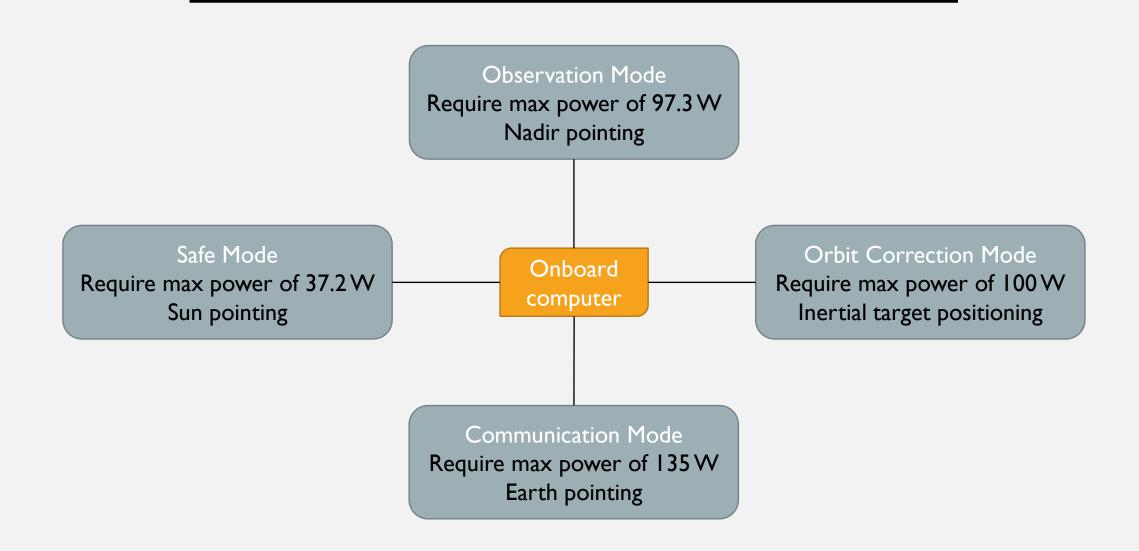
0.036 (each)

8 (each)

50

85

10


APPENDIX

KEY MISSION PARAMETERS

Spacecraft	Size: 50 cm × 50 cm × 50 cm + 2 Folded Solar Array Panels (launch configuration), Launch Mass: 91.266 kg, Dry Mass: 45.852 kg
Design Life Span	Launch: April 2028, Approach to Apophis: March 2029, Observation Period: 40-50 days
AOCS	Sensors: 6x Sun Sensors, Star Tracker, IMU (Inertial Measurement Unit), Relative Navigation: LIDAR and Optical Camera, Actuators: 4x Reaction Wheels, 8x Attitude Thrusters\\ Pointing accuracy: 0.02°
Propulsion	High Performance Green Propulsion (HPGP), Propellant: LMP-103S
Power	Solar Arrays with triple-junction GaAs and 3s4p 11.6Ah 125Wh Li-ion Battery
Communication	X-band (for deep space mission), Antenna: HGA, MGA, LGA×2 (for uplink), LGA×2 (for downlink), Output Power: >15 W, 30%
Estimated Cost	\$35M

APPENDIX

MAIN OPERATION MODES

DATA BUDGET

APPENDIX

Data collected from the camera

1 shot is 1024x768 resolution x 10bit = 7864320 bit = 0.9375 MB

1 shot in every hour for 22 hours in a day = 22 images/day

Total data collected from the camera in the mission: 12 days x 22 images/day x 0.9375 MB = 247.5 MB

Data collected from the LDV: 20MB/h for continuous data collection

1 min. open in every hour for 22 hours in a day = 20MB/h x 1/60 x 22 hours = 7.33 MB

Total data collected from the LDV in the mission: 12 days x 7.33 MB = 88 MB

Data collected from the LIDAR: 20MB/h for continuous data collection

1 min. open in every hour for 22 hours in a day = 20MB/h x 1/60 x 22 hours = 7.33 MB

Total data collected from the LIDAR in the mission: 12 days x 7.33 MB = 88 MB

- Total data collected from the payloads: 247.5+88+88 = 423.5 MB
- We have 16kbps data upload rate in average, having 8 hours communication at the end of mission provides 230400 kb/day
 = 28.125MB/day.

Required #days to upload all data = 423.5/28.125 = 15.05 days

- For daily communication of 2 hours, it is required to send Spacecraft telemetry data
 - Necessary data collected in a day: 1kbps SC TM for 24 hours = 86400 kb
 - Upload capacity in a day: 16kbps upload rate for 2 hours = 115200 kb
 - We can manage the send all necessary data and some data collected from payloads can be also uploaded.

SMALL SATELLİTE COST MODEL (FROM SMAD)

ALL COSTS ARE WRITTEN İN

K\$

TOTAL ESTIMATED
PROGRAM COST:
~35 M\$
(EXCEPT LAUNCH AND GS
NETWORK)

	EM	FM					
Structure	790	790					
Thermal	340	340					
ADCS	2240	2240					
Elecrical Power System	3450	3450					
Propulsion	1500	1500					
TT&C	1200	1200					
Command & Data Handling	850	850					
Spacecraft Bus Total Cost	10370	10370					
Integration, Assemb	1451,8						
Flight Softwa	2750						
LDV, LIDAR, Camera	2074	4148					
Project Management & Sys	2074						
Launch & Orbital Op	518,5						
Ground Support Ec	725,9						
Total Program Cost fo	22038,2						
TOTAL PROGRAM BU	34482,2						

APPENDIX