Mission Design for Deep Space Nano/Micro Spacecraft Utilizing Lunar Orbital Platform-Gateway Opportunities

274

Naoya Ozaki Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

No Marine Andrews

2020/10/10

P R O C Y 0 N

Deep Space CubeSats

©JAXA

©Morehead State University /NASA

©University of Tokyo

/JAXA

©NASA

Lunar Orbital Platform-Gateway (In 2020s)

LOP-G Related Launch Opportunities

Starting from NASA's Artemis-1, we can expect more than 10 CubeSats are launched to deep space every year.

(Launch for LOP-G Construction, Resupply, etc···)

Exploration Firsts

NASA Updates Lunar Gateway Plans, NASA Spaceflight.com (Accessed on March 16, 2019) https://www.nasaspaceflight.com/2018/09/nasa-lunar-gateway-plans/

©NASA

A New World Opened by LOP-G and Nano/Micro Spacecraft

LOP-G

Innovation in Earth satellite (Low cost, short lead time)

- Explosion in numbers
- Frequent missions
- Expansion of stakeholders (Startups, universities, etc)

Number of Satellite Launched For A Year

Similar innovation will happen in deep space missions!!

Satellites Born From UNISEC Activities

http://unisec.jp/unisec/satellites.html (Info. in 2019, accessed on July 11, 2020)

What is Lunar Orbital Platform-Gateway (LOP-G)??

Lunar Orbital Platform-Gateway (LOP-G) is a planned **space station in lunar orbit. NASA's Artemis program** plays a major role to develop the Gateway in collaboration with commercial and international partners: ESA, JAXA, CSA, Roscosmos, etc.

8

Where is the Gateway??

Near Rectilinear Halo Orbit

A type of Halo orbits under the Earth and Moon gravity.

Where is the Gateway??

The equilibrium point where the earth's gravity, the moon's gravity, and the centrifugal force balance each other is called **the Lagrange point**.

Lagrange Points

Five types of Lagrange points exist in each three-body dynamical system.

Ex) Earth-Moon L2 Lagrange point Sun-Earth L1 Lagrange point

Geometry of Lagrange Points Earth-Moon L3 Sun-Earth L1 Sun-Earth L2 Sun Х Х **L4** L1 X L5 × '.2

Sun-Earth line fixed rotational frame.

Geometry of Lagrange Points Earth-Moon L3 Sun-Earth L1 Sun-Earth L2 Sun Х L4 Х L1 Х L5 Gateway is here!!

Sun-Earth line fixed rotational frame.

Near Rectilinear Halo Orbit

P1: Earth P2: Moon Radius P2: 0.0045 Scaling: 1.0 JC: 3.0594349784036745

> The Northern and Southern L1 and L2 NRHOs are periodic in the Circular Restricted 3-Body Model, and can be transitioned into quasi-periodic orbits in a higher fidelity model

Jacobi Constant: 2.99957 Y Amplitude: 3.735951E04 km Z Amplitude: 7.518863E04 km Period: 0008.9130 days Close Approach: 7.071249E05 km

Near Rectilinear Halo Orbit (NRHO)

Characteristics of NRHO

- Geometric relationship to the Earth is always the same
- Halo orbits are unstable (easility reachable/escapable) and spacecraft cannot stay in the orbits without station keeping maneuvers, but NRHO is less stable than general Halo orbits.
- Gateway will be constructed in 9:2 synodic resonant NRHO (SRHO), where the station never experiences eclipse.
- For 9:2 SRHO, the perilune altitude is 1458-1820km, and the apolune altitude is 68267-70112km.

(D.C. Davis, F.S.Khoury, et al. , *AAS*, 2020) ¹⁵

Launch Condition for Gateway Construction Opportunity

For gateway construction opportunities, the spacecraft is expected to be launched into **lunar transfer trajectory** (as was the case with Artemis 1).

Using lunar swing-by on this orbit, the spacecraft can fly to **interplanetary space (to asteroid, Mars, …), periodic orbits in Lagrange points, and so on**.

16

Mission Utilizing Gateway Construction Opportunity

Possible mission scenario for early Artemis opportunity (such as Artemis 2)

Mission Utilizing Gateway Construction Opportunity

1) To Sun-Earth L1/L2: Ballistic transfer without ΔV

- 2) To Lunar Surface:
- 3) To Lunar orbits, Earth-Moon L1/L2:

4) To Interplanetary (Mars, asteroids):

1) Transfer to Sun-Earth L1/L2 Points

There is a manifold structure in periodic orbits around Lagrange points.

When a small ΔV disturb at each difference phase on the periodic orbit, the spacecraft leaves the periodic orbits on a group of orbits called **the unstable manifold**.

Because of the symmetry, the spacecraft can asymptoticaly approach a period orbit by riding on a group of orbits called **the stable manifold.**

(W.S., Koon, M.W., Lo, et al. , *AAS*, 2000)

1) Transfer to Sun-Earth L1/L2 Points

By selecting a single trajectory on a stable manifold, the spacecraft can ballistically tranfer to the periodic orbit around the Lagrange point.

Mission Utilizing Gateway Construction Opportunity

1) To Sun-Earth L1/L2: Ballistic transfer without ΔV

2) To Lunar Surface: Landing with 2.5km/s ${\,\bigtriangleup\,} \lor$

3) To Lunar orbits, Earth-Moon L1/L2:

4) To Interplanetary (Mars, asteroids):

2) Landing on Lunar Surface

It is possible to estimate the landing $\Delta V\,$ by assuming a two-body problem (patched conics)

In the vicinity of the moon, vis-viva equation (orbital-energy-invariance law) gives

$$\frac{1}{2}v^2 - \frac{GM_M}{r} = \frac{1}{2}v_{\infty}^2$$

Suppose that $v_{\infty} = 0.82$ km/s (example of Artemis 1) and $r = r_M$ (lunar radius), te velocity is

$$v = 2.514 \text{ km/s}$$

In order to land on the moon, we need to cancel this velocity, i.e., $\Delta V{\sim}2.5 km/s.$

Mission Utilizing Gateway Construction Opportunity

1) To Sun-Earth L1/L2: Ballistic transfer without ΔV

2) To Lunar Surface: Landing with 2.5km/s $\triangle \vee$

3) To Lunar orbits, Earth-Moon L1/L2: Direct insertion or Low-energy transfer/capture by reducing Vinf.

4) To Interplanetary (Mars, asteroids):

3) Transfer to Lunar Orbits or Earth-Moon L1/L2 points

Launch & Separation

For direct insertion, it is possible to estimate the insertion ΔV by assuming a two-body problem (patched conics). The ΔV is about 0.5-1km/s.

For low-energy transfer/capture, the solar tidal force can effectively reduce Vinf. For NRHO or other Halo orbits, only about 10m/s ΔV is required for the insertion.

3) Transfer to Lunar Orbits or Earth-Moon L1/L2 points

Launch & Separation

25

For low-energy transfer/capture, the solar tidal force can effectively reduce Vinf without ΔV .

Mission Utilizing Gateway Construction Opportunity

- 1) To Sun-Earth L1/L2: Ballistic transfer without ΔV
- 2) To Lunar Surface: Landing with 2.5km/s $\triangle \vee$
- 3) To Lunar orbits, Earth-Moon L1/L2: Direct insertion or Low-energy transfer/capture by reducing Vinf.
- 4) To Interplanetary (Mars, asteroids): Escaping by leveraging Vinf.

4) To Interplanetary Space (Mars, etc)

27

(Ozaki, et al., 2019)

4) To Interplanetary Space (Mars, etc)

Reachable Planet for each Earth departure Vinf

(under Hohmann transfer assumption)

Planet	Earth departure Vinf, km/s
Mercury	7.53
Venus	2.50
Asteroid	Depending on the body
Mars	2.94
Jupiter	8.49
Saturn	10.29

We cannot reach most of them with Vinf=1.5km/s

4) To Interplanetary Space (Mars, etc)

V-infinity leveraging transfer (or Δ VEGA/EDVEGA) can effectively increase the Earth departure Vinf.

If we want to increase Vinf from 1.5km/s to 3.0km/s (reachable to Mars), we need 0.83km/s ΔV (about half of Vinf increment)

V-Infinity Leveraging Transfer to Mars

Gateway Metro Map

Possible Small Sat Mission Utilizing LOP-G

When we assume that we can deliver 6U CubeSat to LOP-G (or SLS/Artemis-1 like trajectory), the following missions are possible.

Target	Possible Using Current Technology	Challenging, Could Be Possible in the Future
Moon	Moon orbiter	(Soft?) Landing
Asteroid	Flyby to NEAs	<u>Rendezvous to NEAs</u> , Exploration to main belt asteroids
Lagrange Points	<u>Earth-Moon halo,</u> <u>Sun-Earth halo</u>	
Mars, Venus	_	<u>Flyby exploration,</u> Orbiter? Lander?
Outer Planet		Dependent exploration (Stand alone mission could be possible if innovative technologies are developed)

Bold: Possible missions by SLS, Artemis-2

Summary

Mhat is the Lunar Gateway?

- Which orbit can the spacecraft transfer from lunar transfer orbit (Gateway construction opportunities)
- Which type of mission can the small spacecraft do by utilizing the Gateway opportunity.