CanSat & Rocket Experiment('99~)

Hodoyoshi-1 '14

Introduction to Mission Idea Contest 7 - Deep Space Mission Challenge -

Shinichi Nakasuka

University of Tokyo

Nano-JASMINE (TBD)

Mission Idea Contest: Background

- Mission Idea Contest was launched in 2010 to encourage innovative exploitation of micro/nano-satellites to provide useful capabilities and services.
- It provides aerospace engineers, college students, consultants, and anybody interested in space with opportunities to present their creative ideas and gain international attention.
- Four books were published as IAA book series.

MIC3 finalists and reviewers, Nov 19, 2014, Kitakyushu, Japan

MIC4 finalists and reviewers, Oct. 21, 2016, Verna, Bulgaria

IAA book series (MIC1-4)

MIC Winners' Mission Ideas

	Proposed idea	Country
MIC 1 (constellation)	Integrated Meteorological / Precise Positioning Mission Utilizing Nano- Satellite Constellation	Japan (professional)
MIC 2 (Satellite Design)	SOLARA/SARA:Solar Observing Low- frequency Array for Radio Astronomy/ Separated Antennas Reconfigurable Array	USA (student)
MIC 2 (Business model)	Underground and surface water detection and monitoring using a microsatellite	South Africa (student)
MIC 3	Clouds Height Mission	Germany, Italy, Slovenia (professional)
MIC 4	CubeSat constellation for monitoring and detection of bushfires in Australia	Australia (student)
MIC 5	Smallsat Ionosphere Exploration at Several Times and Altitudes,	Taiwan, USA, India (student)
MIC 6 (ISS-IceCube)	MUSA: An ISS Experiment for research of a dual culture for Panama Disease	Costa Rica (student)
MIC6 (ISS-iSEEP)	Spectrum Monitoring from Space with i-SEEP (SMoSiS)	Philippines (professional)

MIC6-iSEEP ISS with Kibo Unique Exposed Facility

JEM Small Satellite Orbital Deployer (J-SSOD)

iSEEP

Exposed Experiment Handrail Attachment Mechanism (ExHAM)

Now it's time to go to "Deep Space" - MIC7 Overview -

- Requirement: Propose deep space science and exploration mission with micro/nano satellites
- Constraints: Realistic constraints shown later

http://www.spacemic.net

Importance of Satellite Design and Mission Idea Contest

Importance of "Problem Solving"

Important Engineering Skills: "backward reasoning," or "Inverse problem"

Everyday life requires "problem solving" skills

- Life is full of problem solving
 - We cannot tell whether answer exists or not
 - You should answer with knowledge and skills on various fields (not only engineering and mathematics, but also economics, culture, ethics, laws, etc.)
 - Frequently you should solve the problem as a team
- Problem solving skills can be trained only if you really want to solve the problem.
 - Strong motivation is essentially required !

Satellite project/design contest is....

- Problem solving of "mission success"
 - Scientific goal \rightarrow mission scenario design \rightarrow orbit and spacecraft design
 - Not a academic paper. System should behave correctly in the real world !
- Requiring integration of multiple fields knowledge and skills, people with various background and expertise
 - If you don't know, search for someone who know
 - Example of "Open innovation"
- Giving you very strong motivation to solve the problem, which provide excellent training

Why deep space missions ?

MIC7 Focus on Deep Space Missions

- Theme of MIC7 is "Deep Space Mission."
- This is because technological field of LEO satellites are already almost established, and we consider that creation of deep space mission will give young generation more motivations towards "Frontier."
- Deep space missions require more variety of knowledge and skills, which will give additional areas for teaching and learning
- Because of technological development of micro/ nano-satellites, deep space missions are possible within university capability and small size !

Very quick (<14 months) development

Shinnaka et al., 2017 AJ

EQUILEUS13 CubeSat (6U) will be
launched by NASA SLS in 2020EQUIIIbriUm Lunar-Earth point 6U Spacecraft (6kg nanc-satellite)

Deep space exploration mission is possible with 11kg satellite !!

/30cm

10cm

20cm

Mission to Earth Moon Lagrange Point Intelligent Space Systems Laboratory, 2016/08/01

Requirements and Constraints

- No specific requirements
 - You should create your own mission ideas (scientific goals) and specify the requirements for them
- "Realistic" constraints
 departure (V∞) depends on the mass of spacecraft
 - Onboard Communication System (such as PROCYON)
 - Deep Space Network (DSN) performance
 - A certain position estimation accuracy is assumed
 - Life time is arbitrary (design parameter)
 - Launch window is earlier than 2030

Difference from LEO missions

1) Design of the Trajectory 1-1) Three body or multi-body problem 1-2) Sphere of influence and patched conics 1-3) Swing-by Mechanism 2) Design of the Explorer 2-1) Radiation effect analysis 2-2) Long range communication 2-3) Optical navigation 2-4) Long lifetime 2-5) Autonomy. 3) Ground station and operation

3-1) Operation scenario

We are waiting for innovative and interesting idea of mission and spacecraft design !!

Join us !