Single Bubble Sonoluminescence Microgravity Experiment in 8 Minutes

MSS19B Thesis Project

Author: James Hurrell

Supervisor: Prof. Chris Welch

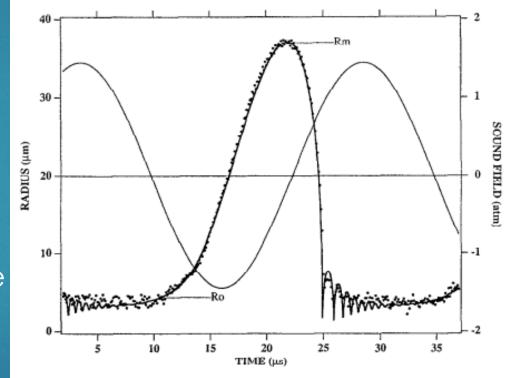
07/12/2018

Outline

- What is Sonoluminescence?
 - Theories and Lab Based Experiment
- Microgravity Experiment
 - Why Microgravity?
 - Experiment Platform
 - The Scientific Aims

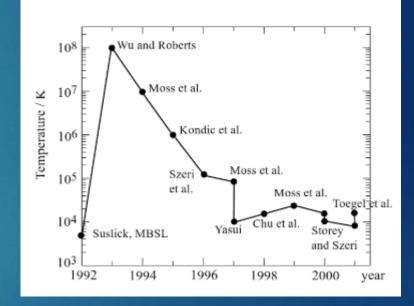
What is Sonoluminescence?

Acoustic Cavitation


- Creating light from sound
- Bubble or bubbles of air in a liquid
- Two main variants:
 - Single Bubble
 - Multi Bubble

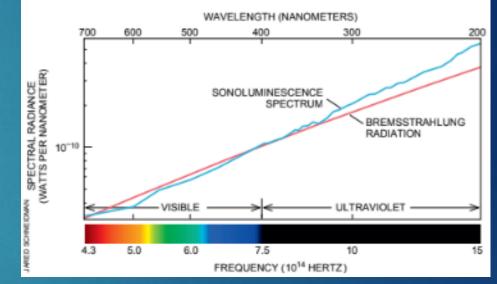
(Steer, 2007)

Typical Bubble Measurement


- Growth and collapse in cycle
- Equilibrium at 4µm
- Maximum at 35µm
- Minimum at 1µm
- Flash occurs lasting picoseconds
- Oscillates then stable for new cycle
- Freq≈25kHz for 100ml flask

(Young, 2005)

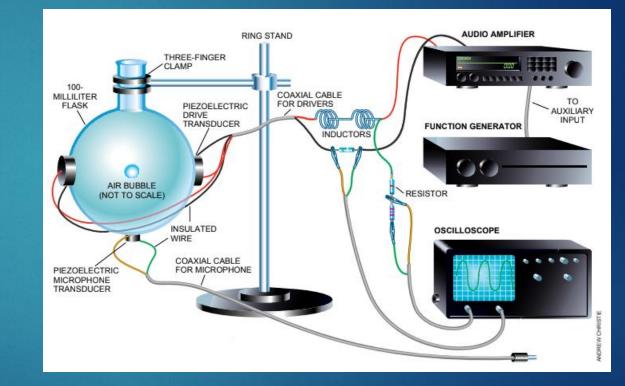
Source of the Flash


- As of 2000 were 16 competing theories
- As of 2015, two are mainstream
 - SL occurs due to extreme conditions inside bubble ionizing the gas
 - Most theoretical predictions estimate 10,000K
- Brenner in 2016, theory for 'cold' Sonoluminescence, due to timing of the flash
- Discharge of an excited cold condensate

(Young, 2005)

What is required?

- Highly spherical/symmetric resonator
- Liquid medium
- Degassed medium, 1/5th atm
- Presence of Argon
- Trapped bubble
- Need stable waveform



(Putterman, 1995)

SPACE UNIVERSI

Typical Experiment

- Equipment:
 - Resonator
 - Piezoelectric Transducers
 - Variable inductor
 - Amplifier
 - Function Generator
 - Oscilloscope

(Putterman, 1995)

07/12/2018

INTERNATIONA

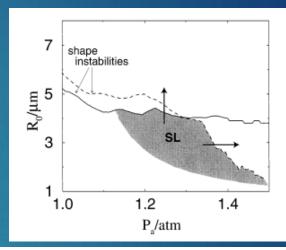
SPACE UNIVERSITY

Experiment Development

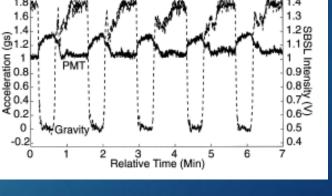
100ml Experiment

Results

100ml Flask Experiment Run

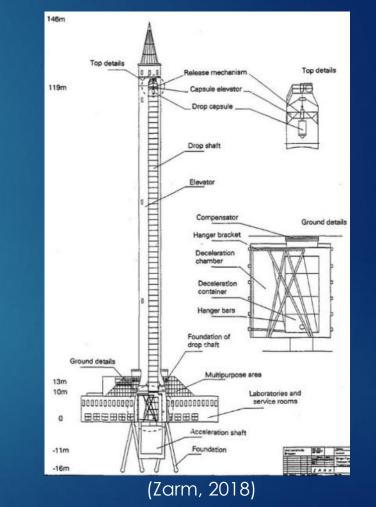

Single Bubble Sonoluminescence Microgravity Experiment Design

07/12/2018


Microgravity Experimentation

Interest in Microgravity

- Current limitation is instabilities
- Driven by buoyancy, thereby gravity
- Microgravity improves intensity
- Preliminary parabolic flight experiment, Mantula in 2000
- 20-40% Increase in SL intensity



Microgravity Experimentation

Experiment Platform

- Drop Tower (ZARM/ISU):
 - High quality
 - Repeatable, allows interaction with experiment
 - Timescale is suitable
- Consideration for ISS/Parabolic Flight
 - Low quality µg environment
 - Temperature control
 - EM shielding issue

SPACE UNIVERS

The International Space University

Microgravity Experimentation

- ISU's Drop Tower
 - 30x30x30cm
 - 2.5 m Drop
 - Providing ≈0.45 seconds of freefall
 - Quality of 10-2g

SPACE UNIVERS

Experiment Proposal

INTERNATIONAL® SPACE UNIVERSITY

Scientific Aims

- Study the intensity of light emitted in the absence of gravity
 - Compare to preliminary parabolic flight study
 - Compare to light emission under the influence of gravity
- Study SBSL at driving pressures outside that for normal stable SBSL
 - Experimental evidence of bubble stability theory

Experiment Proposal

Scientific Value

- Low cost experiment with a high scientific return
- An undeveloped area of research
- Many open questions:
 - Source of light emission
 - Maximum driving pressure/light intensity
 - Validation of stability theory
- Develop understanding of conditions required for SBSL
- Step for future SBSL microgravity studies

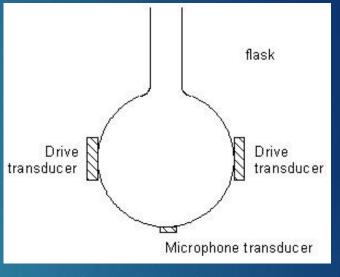
SBSL Microgravity Experiment

Summary

Why a SBSL Microgravity Experiment?

- Fascinating phenomena
- Very open area of investigation
- Comparative analysis to parabolic flight experiment
- Expect drop tower to produce better result
- Look into expanding the SBSL parameter space

References


- Borisenok, V. A. (2015) 'Sonoluminescence: Experiments and models (Review)', Acoustical Physics. Pleiades Publishing, 61(3), pp. 308–332. doi: 10.1134/S1063771015030057.
- Brennan, T. (2016) Understanding sonoluminescence. Morgan & Claypool Publishers Institute of Physics (Great Britain).
- Crum, L. A. (2015) 'Resource Paper: Sonoluminescence', The Journal of the Acoustical Society of America. Acoustical Society of America, 138(4), pp. 2181–2205. doi: 10.1121/1.4929687.
- Matula, T. J. (2000) 'Single-bubble sonoluminescence in microgravity', Ultrasonics. Elsevier, 38(1–8), pp. 559–565. doi: 10.1016/S0041-624X(99)00217-6.
- Steer, W. (2007) Sonoluminescence experiment: sound into light. Available at: http://techmind.org/sl/#tuning (Accessed: 24 November 2017).
- Webb, S. M. and Mason, N. J. (2004) 'Single-bubble sonoluminescence: creating a star in a jar', European Journal of Physics, 25(1), pp. 101–113. doi: 10.1088/0143-0807/25/1/013.
- Young, F. R. (2005) Sonoluminescence. CRC Press. Available at: https://www.scribd.com/document/320164015/Sonoluminescence-by-F-Ronald-Young (Accessed: 25 November 2017).

Questions?

Typical Experiment

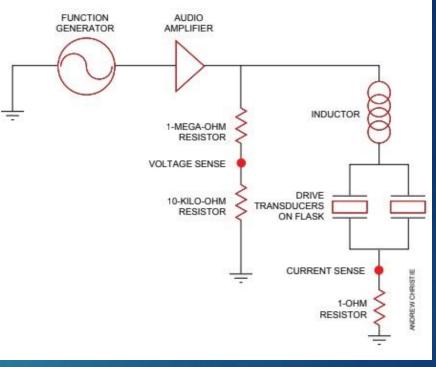
- Circuit Design
 - Set by the resonator
 - Vibrate at its resonant frequency
 - Set the apparatus to match this
 - Sets the electrical resonance required
 - Can be done with an RLC circuit

(Young, 2005)

SPACE UNIVERS

07/12/2018

SPACE UNIVERSI


Single Bubble Sonoluminescence

Typical Experiment

- RLC Circuit
 - Inductor and capacitor in series
 - Forms an electrical resonance

$$f_{res} = f_{elec} \qquad L = \frac{1}{C(2\pi f_{elec})^2}$$

Flask	Res. Freq.	Capacitance	Inductance
250ml	19230kHz	195pF	351mH
100ml	26000kHz	195pF	191mH

(Putterman, 1995)

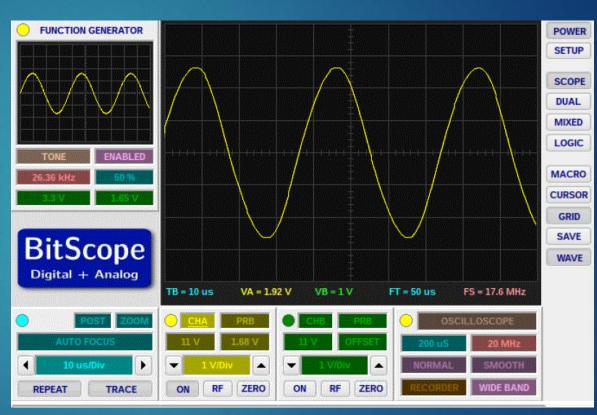
Why the interest?

- Compression stopped at hard core van der Waals radius
- Potential for instigator for extreme chemical reactions

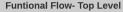
Time before min (ns)	Radius (um)	Velocity (m/s)	Temp (K)
60	13.7	-96.0	112.9
50	12.7	-107.3	130.5
40	11.6	-122.9	157.3
30	10.2	-146.3	200.6
20	8.6	-187.0	283.7
10	6.3	-283.7	520.5
5	4.6	-427.1	975.2

RPK Solution for a 8.5um bubble at P=1.4atm

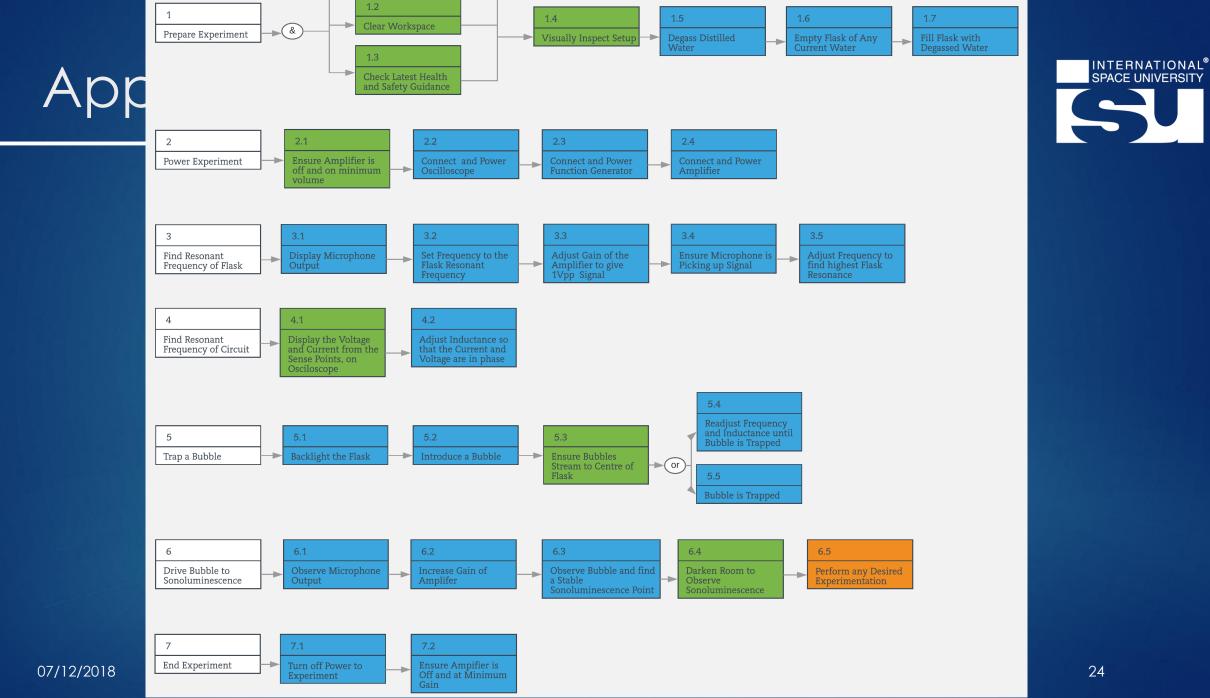
SPACE UNIVERSI


Single Bubble Sonoluminescence Microgravity Experiment Design

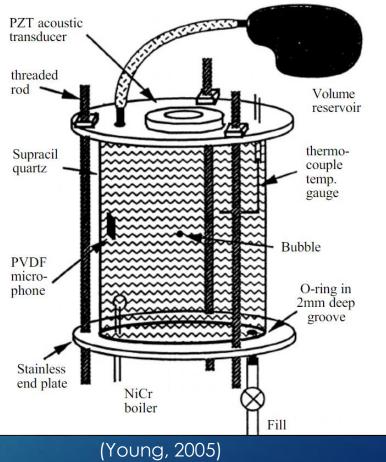
Experiment Development



Microphone Output


- Aids in finding resonance
- DSO on the Bitscope
- At resonance

The measured microphone output signal



The Resonator

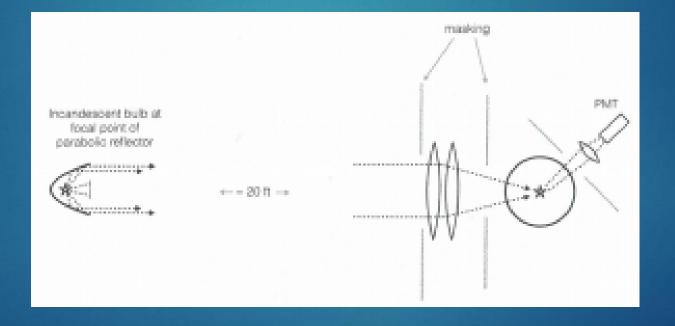
Microgravity Experiment Design

- 3 of 10cmx10cm units
- Central is the resonator
 - Use of a cylindrical resonator

Side units for measurement apparatus and experiment circuit

INTERNATIONAL[®]SPACE UNIVERSITY

Typical Experiment


- Equipment:
 - Resonator
 - Piezoelectric transducers
 - Variable inductor
 - Amplifier
 - Function Generator
 - Oscilloscope

Equipment	Typical Value	
Flask	100ml	
PZT	2nF	
Variable Ind	30mH	
Amplifier	40W	

SPACE UNIVERSI

Measurement

• Mie scattering

INTERNATIONAL

SPACE UNIVERSITY

INTERNATIONAL[®] SPACE UNIVERSITY

Rayleigh-Plesset-Keller equation

$$\left(1 + \frac{1}{c}\dot{R}\right)\left(P_{\text{gas}} - P_0 - P_d(t)\right) + \frac{R}{c}\left(\dot{P}_{\text{gas}} - \dot{P}_d\right) - 4\eta\frac{\dot{R}}{R} - 2\frac{\sigma}{R}.$$

Design

Microgravity Experiment Design

Analysis

- Closed system
 - Regulate gas content
 - Potential for higher survivability
- Raspberry Pi allows further automation
 - Feedback from circuit and visual detection
- Include measurement apparatus
 - Measure radius- Mie Scattering
 - Intensity- Photometer