Student Representative Presentation

UNISEC Japan

From CanSats to Cubesats & Small Sats

Nobuhiro Funabiki

Intelligent Space Systems Laboratory (Nakasuka/Funase Lab.) Department of Aeronautics and Astronautics The University of Tokyo, JAPAN

Self Introduction

- ▶ Name : Nobuhiro Funabiki (船曳 敦漠)
- Affiliation : The University of Tokyo : UNISEC Japan
- Grade : 2nd year master student
- Supervisor : Prof. Shin-ichi Nakasuka
- Research : Spacecraft Formation Flight
- Project : Electrical Power System

Student Activities of UNISEC Japan

Noshiro Space Events

Competition of amateur rockets and autonomous robots (Cansats)

Noshiro (Japan)

- Launch of Hybrid rockets
- Cansats drop from balloons
- Venue : Noshiro, Akita, Japan

ARLISS: A Rocket Launch for International Students Satellite

- Competition of autonomous robots (Cansats)
 - Comeback competition
 - Mission competition
- Venue : Black Rock Desert, Nevada, USA
- Date : About 1 week on September every year
- Participants : Japan, Korea, USA, Egypt, Peru, Costa Rica,...

Black Rock Desert (Nevada)

ARLISS: A Rocket Launch for International Students Satellite

Comeback Competition

experience the whole process of a mission like a planetary exploration.

Rover Type

Airplane Type

From Cansats to Cubesats

From Cansats to Cubesats

EQUULEUS <u>EQU</u>ilibriUm Lunar-Earth point 6U Spacecraft

Development

Mainly by the University of Tokyo & JAXA

Spacecraft-System

▶ Weight : 12 [kg] ▶ Power : 48 [W]

Size : 6U (10cm × 20cm × 30cm)

Launcher

► NASA Space Launch System (SLS) EM-1

Technological Mission

- Trajectory design & control to EML-2
- Demonstration of the water resistojet propulsion system.
- Demonstration of the deep space communication transport

Science Mission

- Observation of plasmasphere around the Earth
- Observation of dust distribution around the EML2
- Observation of lunar impact flush on the moon surface

Cubesat Development (EQUULEUS) ①

Component Tests

Cubesat Development (EQUULEUS) (2)

Temperature, Vacuum, and Vibration Test

Mission of EQUULEUS

Technology

Trajectory Control to EML2

- •~6 months flight to Earth-Moon Lagrange Point 2
- Multiple lunar gravity assists

10² Sun-Earth rolating. Earth-Moon LGA3 Bartin to EM2 / LGA Bartin Hoon LGA3 Bartin Hoonn LGA3 Bartin Ho

AQUARIUS

- New resistojet water propulsion system
- •Non-toxic, easy to handle

XTRP for CubeSats

Miniaturization of the deep space communication transponder for CubeSats

Science

DELPHINUS

Observation of Lunar Impact Flash

PHOENIX

Observation of the Earth's plasmasphere

CLOTH

Measurement of dust in cis-lunar region

Mission of EQUULEUS

Conclusion

UNISEC Global Community

