

The 5th

Mission Idea Contest

Micro/Nano Satellites for Global Sustainable Development

19 November, Strasbourg France

Arid and Semi-Arid Lands Satellite (ASAL-SAT

A LoRa ground sensor network for easing life in Sub-Sahara Africa ASAL areas

> Kiruki Cosmas Kyushu Institute of Technology

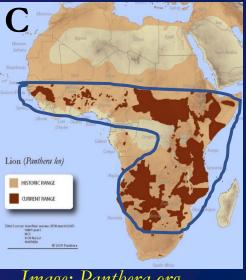
Introduction

Era of "big" data

- Can remote areas benefit?
- How to collect this data?

Sub Sahara Africa

- Pastoralism
- Wildlife



A: Cattle distribution

B: Elephants distribution

C: Lion distribution

<u>Image: Panthera.org</u>

Human-Wildlife

- Co-Existence
- Pasture and Water Conflicts
- Endangered Wildlife

Image: REUTERS/Goran Tomasevic

<u>Image: REUTERS/Goran Tomasevic</u>

World » U.S. | Africa | Americas | Asia | Australia | China | Europe | Middle East | 1

International Edition •

11 endangered rhinos were moved to start a new population. 10 died.

A. Human-Wildlife Conflict, Laikipia Kenya, Feb 2017

B. Carcass of an elephant, Laikipia Kenya, Feb 2017

Disaster Management Flash floods monitoring

Image: The Standard Newspaper, April 2018

A. Mandera Floods, Kenya, 2018

В

Image: The Nation, April 2018 B. Turkana Floods, Kenya, 2018

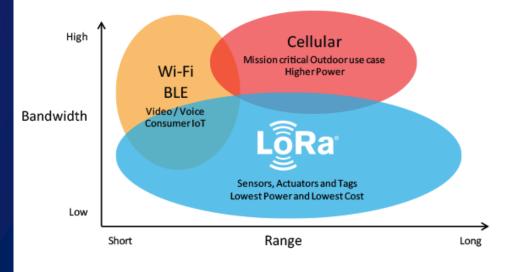
ASAL-SAT

Mission Objectives

- Wildlife and Livestock Population mapping, enumeration and tracking
- Vegetation cover surveillance, and pasture and water identification
- Disaster e.g. Flash floods warning system

How to achieve this?

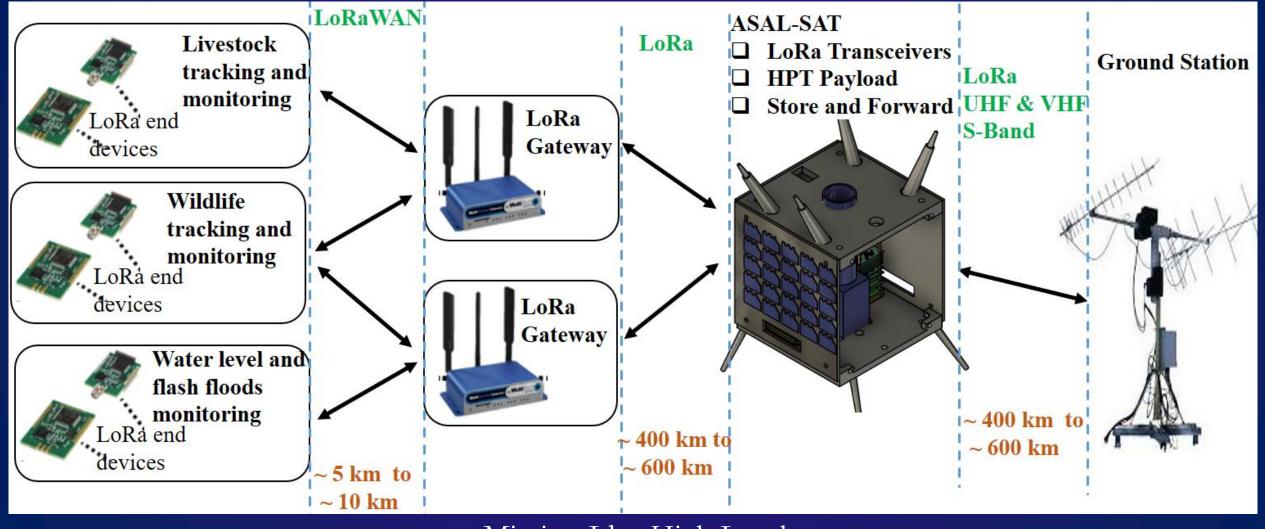
- Very remote areas
- Lack of infrastructure Power, communication
- Low population density



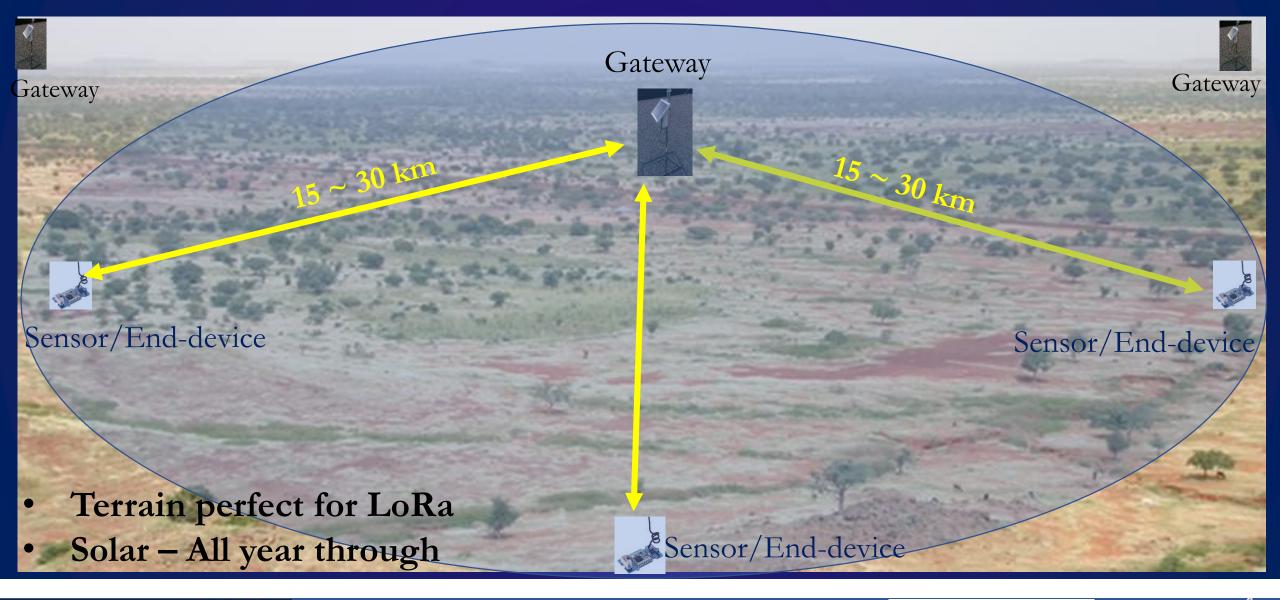
LoRa and LoRaWAN Introduction

- LoRa Chirp Spread Spectrum (CSS) modulation
- LoRaWAN Communication Protocol built on the LoRa physical layer
- Link between gateways and backend servers?
 ➢ GSM/Cellular; Fibre
 ➢ ASAL-SAT
- OSI Model Network LoRaWAN Data Link LoRaWAN Physical LoRa

LoRa and LoRaWAN - Attractive Features

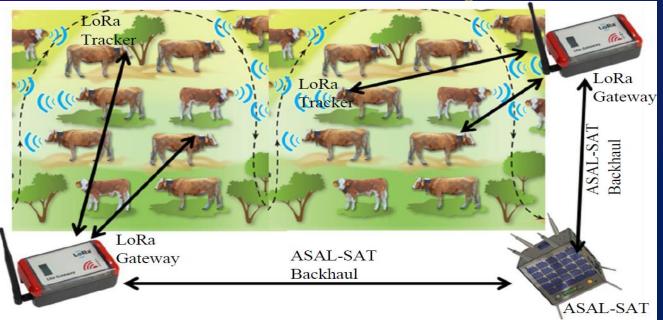

- Low power consumption (10 years of battery lifetime)
- Long communication range (2-5 km in urban centres and 15 km in rural areas)
- Operates in the license-free regulated ISM bands (between 166 to 1020 MHz)
- LoRa based devices are cheap and highly affordable

Concept of Operations


Mission Idea High Level

Ground LoRa-based Network

Livestock Tracking


- Nomadic Lifestyle
- Cattle rustling
- Real & Decoy LoRa bands

<u>Image: PRISE/Ray Morris</u>

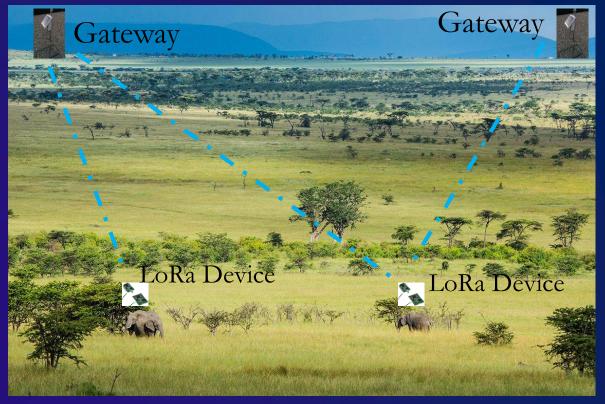
Image: CattleWatch

LoRa Ground Data Generation Estimation

• Area under consideration ~100 km²

Population density	Average persons per	Households per 1 km ²	Total Households
	Household	KM ⁻	in 100 km ²
$30/\mathrm{km}^2$	6 5		500
Average livestock per	Livestock with LoRa	Total animals with	
household	tracker per household	trackers in 100 km ²	
100	100 10 5000		
LoRaWAN overhead	Animal Identification	Total packet size per	Total packet sizes
size per packet	er packet and tracking data size		in 100 km ²
13 bytes	5 bytes	18 bytes	9000 bytes

- Low Data size suited to LoRaWAN : 100 km 2 ~ 9 kB
- $100 \text{ km}^2 \sim 10 \text{ gateways sufficient for 15 km radius}$
- More gateways ~ Increase robustness, minimize packet loss

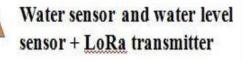


WildLife Tracking

- Endangered Species
- Tracking and mapping
- Gateways can have GPS
- LoRa Triangulation for end devices

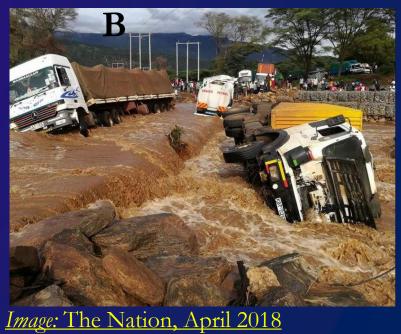
Comparison with Existing		VHF Collars	GPS/GSM Collars	GPS Satellite Collars	LoRa + ASAL- SAT
Solutions	Data Reception	Handheld radio & GPS recorder	GSM mobile phone coverage	Commercial Satellite	Gateways & ASAL-SAT
WILDLIFE ACT	Batteries Lifetime	3 years	2 years	2 years	~ 10 years
FOCUSED CONSERVATION	Weight		300 – 500 g	400 – 700 g	< 100 g
	Cost (USD \$)	300 - 500	1000 - 2000	2500 - 4000	10 - 50

Flash Floods/Water Level Monitoring and Warning System


C. LoRa Ultrasonic Water Level Sensor

~30 Km

B. Turkana Floods, Kenya, 2018


~30 Km

LoRa Gateway

Image: The Standard Newspaper, April 2018

~30 Km

Image: decentLabs

Vegetation Cover Surveillance

- Curb overgrazing, deforestation, desertification
- Assess grassland and savanna degradation
- Aid in pasture and watering points location

Image: The Philippines, Dept. Science and Technology

5th MIC, Strasbourg, France Nov 2018

5 meter spatial resolution

By Tohoku and Hokkaido universities

High Precision Telescope (HPT)

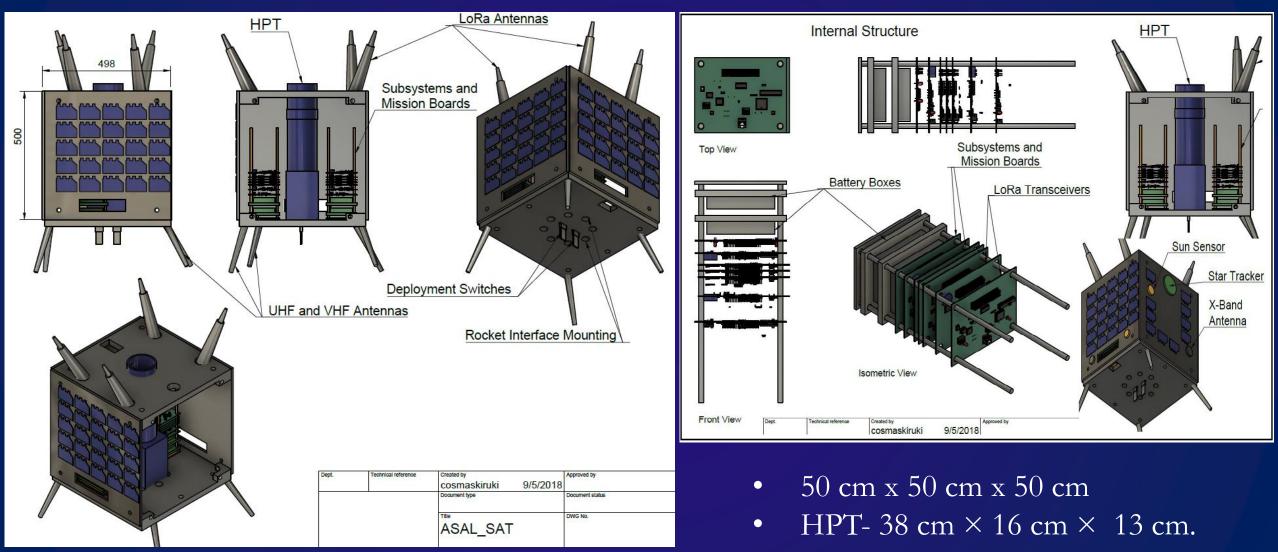
Philippines Diwata-1 satellite

Image: HPT, Junichi Kurihara et. al

a) HPT on Diwata-1

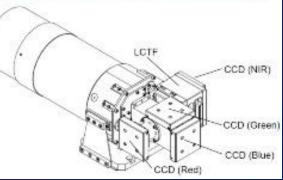
b) LandSat 8 : 15 meters (panchromatic);30 meters (visible); 100 meters (thermal)

Key Performance Parameters


- Tracking updates 30 minutes interval
- Flash Floods monitoring 15 minutes update
- Ground Spatial resolution 30 meters

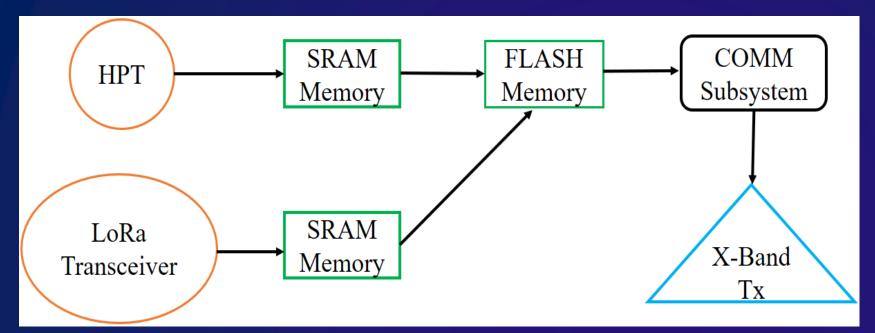
Space Segment

Major Mission Payloads LoRa Transceivers


- ASAL-SAT 4 LoRa Transceivers
- Simultaneous on 8 channel; 6 SFs per channel = 48 ground gateways
- Half Capacity utilized 25 ground gateways simultaneously (100 total)
- 10 byte packet takes about 741 ms Time on Air (TOA)

High Precision Telescope (HPT)

- Field of view of **0.28**^o by **0.21**^o
- 2 km x 1.5 km
- Temporary image storage Static Random-Access Memory (SRAM)


<u>Image: HPT, Junichi Kurihara et. a</u>

Store and Forward

Other Subsystems

- Orienting HPT for desired location image capture
- Antenna pointing for ground LoRa network

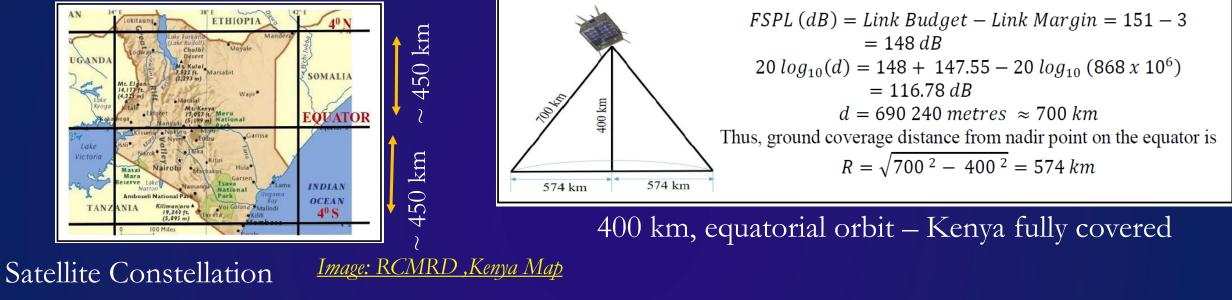
- Determination: Sun sensor (coarse), Star Tracker Camera (fine); GPS (Earth-reference); Gyroscopes, Magnetometer
- Actuators: 3 Axis stabilization by Reaction wheels; Magnetorquers

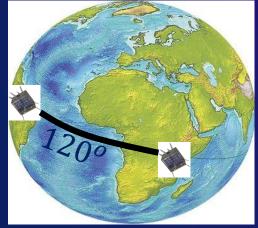
Communication

- X- band
 - ➢ 8.3 GHz
 - Imagery telemetry, up to 50 Mbps
- UHF ≻ TT & C

Subsystems Power and Mass Budget

No	Device	Mode	Power Consumption	Power Consumption	Mass (g)
			Idle (mW)	Peak (mW)	
1	4 LoRa Transceivers +	RX and	500	3040	200
	Controller	TX			
2	X-Band Transmitter	TX only	270	12000	300
3	UHF (TT&C)	RX	200	200	85
		TX	700	1700	100
4	HPT Imager		100	4000	3000
5	ADCS				
	Reaction Wheels	Idle	180	6000	760
	Star Tracker		100	7000	2200
	Sun Sensor		120	120	15
	GPS Receivers		240	950	47
6	OBC		400	2000	70
7	EPS, Solar Panels and			200	2500
	Batteries				
8	Structure and				4500
	harnesses				
	Total		2810	37210	13777


5th MIC, Strasbourg, France Nov 2018



20

Orbit/Constellation Description

ASAL-SAT – Technology demonstration

Equatorial orbit – 14 revs per day (100 mins) 3 satellites (**120**^{*o*}) – revisit time 30 mins

Implementation Plan - Stakeholders

➢ ASAL-SAT – Kenya Chapter

Kenya Space Agency

Ground Stations

Image: Luigi Broglio Space Centre, Malindi Kenya

• X-Band station with a 6 m long parabola

5th MIC, Strasbourg, France Nov 2018

40 N

SOMALIA

EQUATOR

INDIAN

OCEAN

ETHIOPIA

ASAL-SAT – Sub Sahara Adoption

Data Dissemination

Local Media Stations

Implementation Plan - Partners

Cost Schedule

Cost Center	Unit Cost (USD)	Total Cost (USD)
20 Kg Satellite Hardware and Assembly (3)	200,000	600,000
Satellite tests and transportation		200,000
Human Resource (Initial 3 years)		700,000
Launch (100 Kg class)		3,000,000
Operational Costs for 3 Years (after launch)		1,000,000
Total		5,500,000

Technology Demonstration Partners

Thank You

