

Stellenbosch University

Introduction Concept of Operations Space Segment Description Orbit and Constellation Implementation Plan Future Work

Mining Surveillance Application Using a CubeSat Constellation

Authors: A.K. Naudé, F.N. Lombard, L.H. van der Stokker

Co-Authors: Dr H.W. Jordaan & Mr A. Barnard

Stellenbosch University Department of Electrical and Electronic Engineering, Western Cape, South Africa

19 November 2018

Stellenbosch University

Introduction

Concept of Operations

Space Segment Description

Orbit and Constellation

Implementation Plan

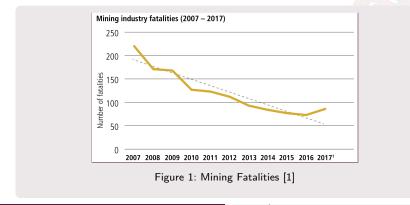
Future Work

1. Introduction

Mining Industry in South Africa

Minerals Council SA in 2017

- Nearly 465,000 people employed
- Represented 90 % of SAs mineral production
- \$8.8 bn contributed to employee earnings
- \$1.1 bn contributed to SA in taxes


Statistics obtained from: Minerals Council SA Facts and Figures [1]

1. Introduction

Problem Statement

"A particular concern during 2017 has been the number of accidents related to seismic activity and subsequent fall of ground incidents." - Minerals Council SA Facts and Figures [1]

Stellenbosch University

Problem Statement

Socio-economic and Environmental Impact of Mines

- Mining operations utilise large quantities of water
- Operations significantly impact water availability and quality
- Polluting the environment
- Deteriorating water infrastructure poses an additional future threat [2]

South African Human Rights Commission [2]

1. Introduction

1. Introduction

Current Risk Mitigation Strategies

- · Ground movements are monitored using seismic sensors
- Data acquisition using seldom aeroplane flyovers
- Drones have been considered over manned flight
- MCSA works with environmental departments

Stellenbosch University

1. Introduction

Proposed Solution

- Satellites capabilities extend beyond store-and-forward of data
 - Using imagery to monitor ground deformations and the environment
 - Increase mine sensor range
- Improve coverage frequency of active and inactive mines
- Improve the monitoring of mines and adjacent water sources across SA
- Early detection and management of disasters
- Build database for better predictions

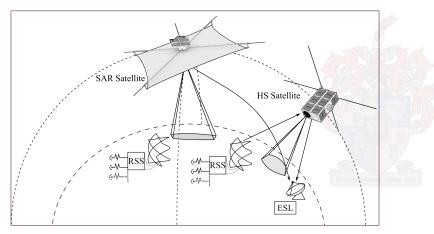
1. Introduction

UN Sustainable Development Goals

- 1 Good health and well being
- O Decent work and economic growth
- 3 Industry, innovation and infrastructure
- **4** Responsible consumption and production
- 6 Life on land
- 6 Life below water
- Partnerships for the goals

Mission Objectives

2. Concept of Operations

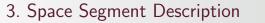

Monitor irregular seismic activity near mines

- Measure and detect ground deformations and movements in land surfaces
- 3 Analyse environmental effects of active and inactive mines
- 4 Relay seismic sensor data to the ground station

2. Concept of Operations

Mission Concept

Stellenbosch University



Overview

3. Space Segment Description

- TT&C link at 140 MHz up and 435 MHz down at 9600 bps
- SAR and HS 2.9 GHz data link at 2 Mbps
- Satellites will not require a large amount of propellant
- Both satellite types will be low in mass and volume
- At mission EOL satellites will de-orbit in less than 4 years
- Each satellite's estimated cost is \$ 1.5 mil

SAR Satellite Design

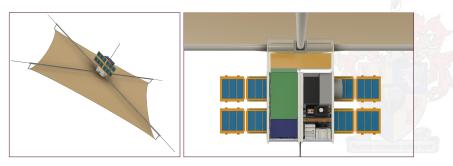


Figure 3: SAR Outside View

Figure 4: SAR Inside View

3. Space Segment Description HS Satellite Design



Figure 5: HS Outside View

Figure 6: HS Inside View

Stellenbosch University

4. Orbit and Constellation

Orbital Parameters

- 10am/10pm for better HS imaging
- 6am/6pm for SAR; constant sun exposure
- 1% Swath overlap nadir-pointing

Satellite Constellation Parameters

Satellite	Altitude	Inclination	Separation
HS	500 km	97.4°	5.1°
SAR	500 km	97.4°	13.5°

4. Orbit and Constellation

HR Coverage

- HS max roll of 10° as GSD is not to exceed 30 m
- Effective swath of 88 km wherein a 38 km image can be captured
- SAR has a swath of 50 km; requires fewer satellites for the same coverage
- Each satellite can transmit up to 140 MB per pass (100 km and 15 km, respectively)

6 Day Constellation Means for Communication

Satellite	Elevation	Range	# Accesses	Access Time
HS	10.1°	1901 km	~ 325	182 331 s
SAR	10.2°	1912 km	~ 220	122 514 s

5. Implementation Plan

Ground Segment

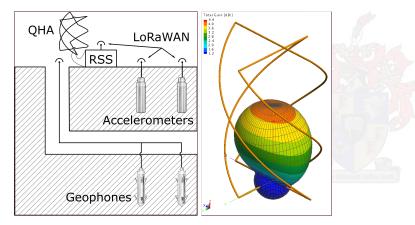


Figure 7: Remote Sensing Station Setup

Stellenbosch University

5. Implementation Plan

Mission Risk

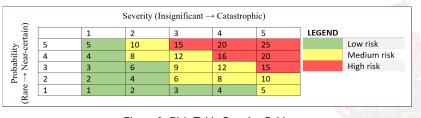


Figure 8: Risk Table Severity Guide

Risk	Comms Failure	ADCS	Thruster	Debris	SAR	Funding	Launch	Interference
Score	15	10	6	6	6	6	4	2

Figure 9: Satellite Risk Analysis

Stellenbosch University

6. Future Work

Possible Expansions

- Monitor ocean mining activities and effects
- Monitor fracking activities
- Collaborate with other countries
- Open source data
- Implement a more powerful HS imager
- Change modulation scheme
- SAR techniques to only scan points of interest to reduce data
- Increase number of GSs to improve data acquisition

7. References

Bibliography

- [1] Minerals Council South Africa. (2017), Facts and Figures 2017, [Online]. Available: https://www.mineralscouncil.org.za/industrynews/publications/facts-and-figures (visited on 12/11/2018).
- [2] South African Human Rights Commission. (2016), National Hearing on the Underlying Socio-economic Challenges of Mining-affected Communities in South Africa, [Online]. Available: https://www.sahrc.org.za/home/21/files/SAHRC%5C%20Mining%5C% 20communities%5C%20report%5C%20FINAL.pdf (visited on 12/11/2018).
- [3] Council for Geoscience. (2003), Selected Active Mines, [Online]. Available: http: //www.geoscience.org.za/index.php/publication/downloadablematerial (visited on 12/11/2018).

Stellenbosch University

8. Back-Up Slides

GSD Pointing Off-Nadir

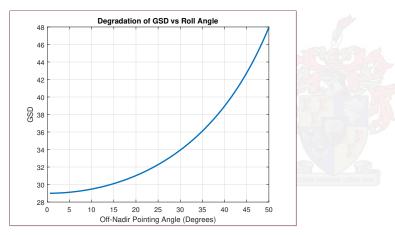


Figure 10: Imager GSD vs Roll Angle

Stellenbosch University

8. Back-Up Slides

Significant SA Mining Locations

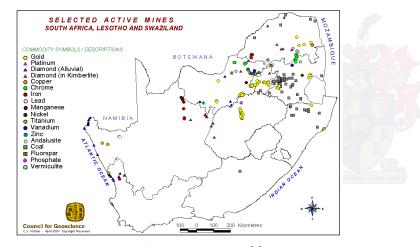


Figure 11: SA Mining Locations [3]

Stellenbosch University

8. Back-Up Slides

HS Coalmine Coverage

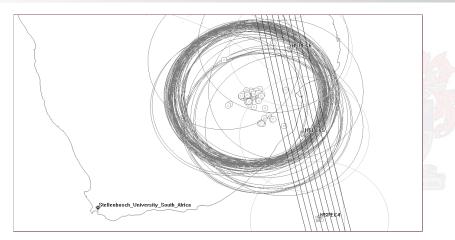


Figure 12: HS Constellation Pass over SA Coal Mines; Their Sensors are Indicated as Targets with Circles around Them

F.N. Lombard, L.H. v.d. Stokker

19 November 2018

6th UNISEC Global Meeting - MIC5

Stellenbosch University

8. Back-Up Slides

HS Area Coverage

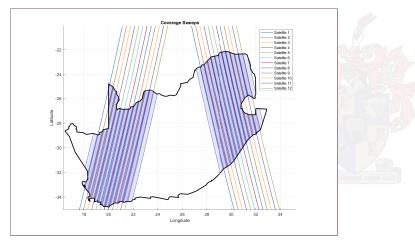


Figure 13: HS Constellation Swath Area Coverage

F.N. Lombard, L.H. v.d. Stokker

19 November 2018

23 / 18

Stellenbosch University

STK Constellation Visualised

References Back-Up Slides

8. Back-Up Slides

FOR_UNFUNDED_EDUCATIONAL_USE_ONLY

Figure 14: 3D View of the HS Satellites Communicating with the RSSs

19 November 2018

Stellenbosch University

8. Back-Up Slides

Cost Budget

Component	Amount	Cost (USD)	Total (USD)	Component	Amount	Cost (USD)	Total (USD)
General				HS Satellite Only			2 Mars
Launch as priced per 1U	120	80 000	9 600 000	CPUT S-Band Transmitter and Patch	~ 144 000		
Structure and Mechanism	20	10 000	200 000	Crossed Dipole Antennas	12	4 000	48 000
Cube Space CubeADCS	20	49 850	997 000	SCS Space Chameleon HS Imager	12	200 000	2 400 000
Cube Space Reaction Wheels	60	6 000	360 000	Totals HS Only		05-11	2 592 000
ISIS 1U Solar Panels	276	2 900	800 400				
Busek BmP-220 Plasma Thruster	20	50 000	1 000 000	SAR Satellite Only	1	7/1 📖 🗆	
OBDH with Mass Data Storage	20	11 000	220 000	High Power EXA Solar Panels 32 15 600			
CPUT TT&C UHF/VHF Transceiver	20	~ 4 500	~ 90 000	Commissioning Monopole Antenna	1 000	8 000	
EPS and Battery Pack	20	22 550	445 000	Crossed Dipole Antennas 8 4 000			
General Components Total			13 848 400	SAR Combined Payload (Estimate)	8	1 000 000	8 000 000
				Boom Deployment System	8	N/A	N/A
				Deployment Booms	32	N/A	N/A
				Copper-coated polymer membranes	8	N/A	N/A
				SRI-CIRES Payload	8	N/A	N/A
				Totals SAR Only		F Pectora ri	8 539 200
				Mission Total (Total Cost + 25% Mar	gin)		31 224 500

Back-Up Slides

Figure 15: Estimated Cost

8. Back-Up Slides

Link Budget

			Data Link			TT&C and RSS Data Relay				
Item	Sym.	Units	НS	SAR	RSS	HS UP	HS Down	SAR Up	SAR Down	
Frequency	ſ	MHz	2900	2900	140	140	435	140	435	
Tx Power	Pτ	W	1	6	1	1	2	1	2	
Tx Power	Рт	dBW	0	7.8	0	0	3	0	3	
Tx Antenna Beamwidth	θt	•	60	5	101	16.7	91	16.7	N/A	
Peak Tx Antenna Gain	GT	dBi	7	36	4	12	3.2	12	0	
Tx Antenna Pointing Loss	Lp	dB	3	35.8	0	0	3.6	0	0	
Free Space Losses	L_{FS}	dB	166.3	166.3	131.4	140	149.8	140	149.8	
Peak Rx Antenna Gain	G_{R}	dBi	46.5	46.5	2.4	2.4	30	0	30	
Rx Antenna Beamwidth	θr	•	0.8	0.8	148	148	5.4	N/A	5.4	
Rx Antenna Pointing Loss	Lp	dB	4.6	4.6	2.8	2.8	0.1	0	0.1	
Data Rate	R	kbps	2000	2000	9.6	9.6	9.6	9.6	9.6	
Required CNR	C/N_0	dB-Hz	73.5	73.5	50.3	50.3	50.3	50.3	50.3	
CNR	C/N_0	dB-Hz	89.9	126.7	72.9	80.6	91.5	81	88.3	
Required Eb/N0	<i>Е</i> _b /N ₀	dB	10.5	10.5	10.5	10.5	10.5	10.5	10.5	
System Noise Losses	Ls	dB-K	21.3	21.3	27.9	27.9	23.4	27.9	23.4	

Figure 16: Link Budget

Stellenbosch University

8. Back-Up Slides

Power Budget

Component	Maximum Power (~W)	Duty Cycle	Orbit Average Power (~W)
Common			•
ADCS	0.85	100%	0.85
Reaction Wheels (x2 at full speed)	3	20%	0.6
OBDH (Without comms)	1	100%	1
TT&C Communications	7.22	8%	0.58
Plasma Thruster	7.5	< 1%	0.075
Total for Common Components	19.57	15.87%	3.11
· · · ·			
HS Satellite Only			4 4
Data Downlink	5	8%	0.4
HS Imager (Imaging Mode)	3.5	10%	0.35
HS Imager (Read-Out Mode)	2.5	50%	1.25
Total for HS Satellite	30.57	16.7%	5.11
SAR Satellite Only			Per
Data Downlink	10	8%	0.8
SAR	192	10%	19.2
Total SAR Satellite	221.57	10.43%	23.11

