
Agenda item 10 Technical Presentation at the 61st Session of the Committee on the Peaceful Uses of Outer Space

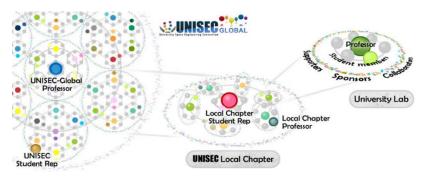
GLOBAL ANTENNA SHARING PROJECT for achieving Sustainable Development Goals

Prof.Dr. Alim Rustem Aslan UNISEC-GLOBAL Steering Com.Member

Manager, Space Systems Design and Test Laboratory Istanbul Technical University, Faculty of Aeronautics and Astronautics, Istanbul, Turkey aslanr@itu.edu.tr

A UNISEC-GLOBAL PROJECT

- The Global Antenna Sharing Project initiated by
- Kyushu Institute of Technology, UNISEC-Japan
- in collaboration with
- Istanbul Technical University, UNISEC-Turkey
- with support of InfoStellar, Japan



 1_{773}

What is UNISEC-Global?

- University Space Engineering Consortium (UNISEC)-Global is an international NGO, consisting of local-chapters across the world. Established in 2013, and accepted as permanent observer by UNCOPUOS in 2017.
- Its **primary objective** is to help create a world where space science and technology is used by individuals and institutions in every country, rich or poor for peaceful purposes and for the benefit of humankind.
- Has provided hands-on satellite training program, conferences and competitions

15 Local Chapters and135 universities from40 countries with 47 POC

Vision 2030-ALL

The 2030 Agenda for Sustainable Development

Key Principle: No one will be left behind.

Vision 2030-ALL

"By the end of **2030**,

let's create a world where <u>university students</u> can <u>participate in practical space</u> <u>projects</u> in all countries."

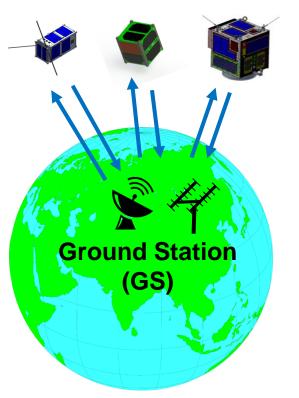
Need wise strategies, partners, collaborators and supporters

6th UNISEC-Global Meeting will be held at ISU Strasbourg, France in Nov 19-21, 2018

Main Goal of Project

- Efficient use of *Micro/Nano Satellite* systems (constellations) (300 placed in orbit in 2017)
 - Sharing resources
 - Helping less developed institutions to reach higher levels
 - Increased usage time of expensive systems (ground stations)
 - Reduced downtime
 - Better use of systems
- help yourself help other

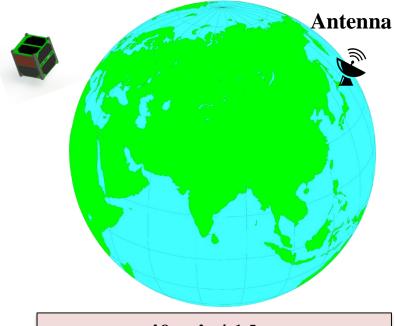
how we can help SDGs...?



https://sustainabledevelopment.un.org/sdgs

Satellites Communication

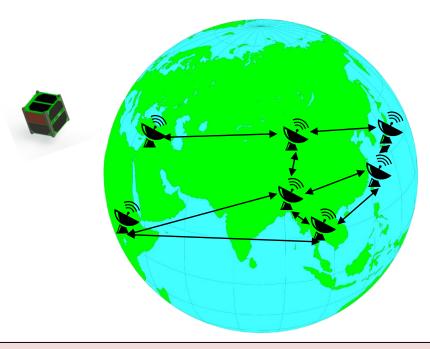
Satellites


Function of Ground Station Pointing to a satellite (Satellite tracking)

- Send telecommand to satellite
- Receive telemetry/mission
 data from satellite
- Process RF signal (Mod/Demodulation, Coding/Decoding)

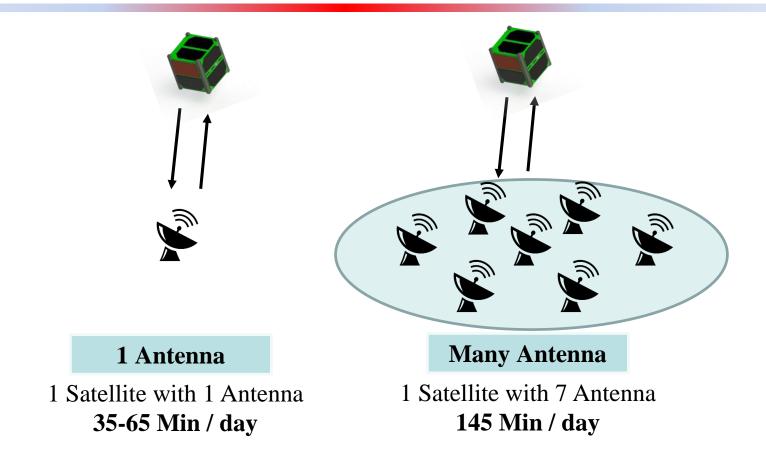
Limitation of Communication Time

- Limited communication time window in LEO
- Average communication time = 40 minutes/day
- Require long time to download payload data



40 min/ 1day [10min x 1 pass x 4 times]

Antenna Sharing

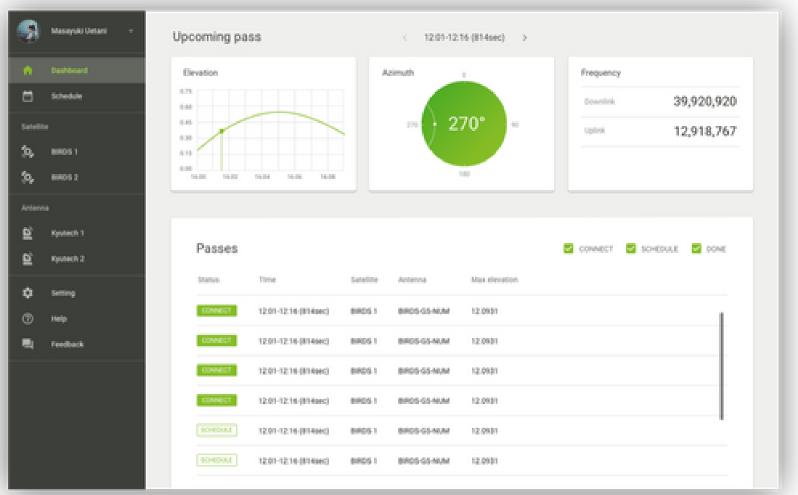

Increase the number of tracking antennas

By connecting more antenna **Time Resolution Increases!**

Advantage of Many Antennas

Time resolution increase up to 3 time!!

A solution: StellarStation


A cloud-based software platform that connects satellite operators with antenna owners, solving both the problem of insufficient satellite access time and unused antenna idle time.

The process is simple:

- Share your antenna's idling time and get credits.
- Use your credits to access other antennas around the globe.
- Exchange your credits for cash, or buy additional credits for even more antenna access time.

Graphical User Interface

A new standard for satellite ground stations

- Flagship product, StellarStation. Reshape the satellite operation scene in three major ways:
- Shifting the paradigm to antenna sharing, opening up large numbers of antennas for use and dramatically increasing access
- Solidifying satellite communications into a standardized system so that this increased access can be seamlessly utilized
- 3. Creating a real-time transmission environment for satellites, thus lowering the barrier to entry on satellite operations

space development for everyone

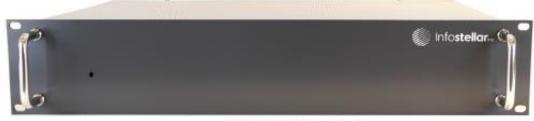
 Building this new ecosystem for ground station networks, we hope to open the door for previously unachievable space development.

Space for everyone !

StellarStation Amateur

- Built on the StellarStation platform, StellarStation Amateur provides free LEOP support for amateur UHF band satellites.
- Use StellarStation Amateur to access invaluable telemetry data and schedule passes using member worldwide antenna network during a critical phase of launch and satellite operations.

İTÜ-SSDTL VHF/UHF GS

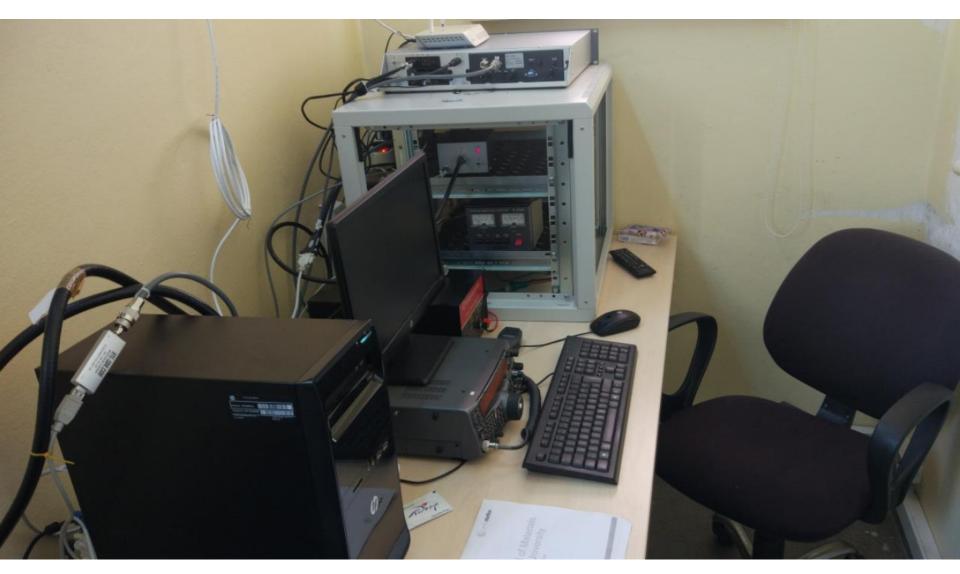


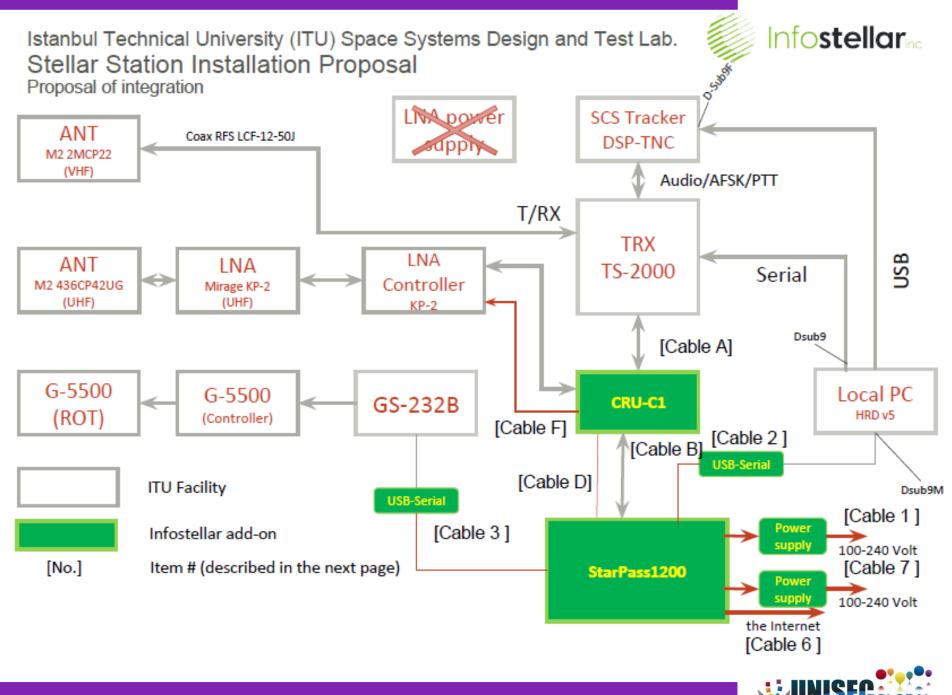
University Space Engineering Consortium

ANTENNA

Additional Equipment for Antenna Sharing

SP1200 Main Unit


CRU Type-C1


Cable 1

İTÜ-SSDTL COMM LAB with StellarStation

GSN Device

Front Panel

Rear Panel

- Receiver
 - Satellite downlink signal reception
 - Output in IQ data (raw data)
 - Centralized demodulation and decoding are done by software defined radio (SDR) at Central Server.
- TLM transfer
 - Transfer IQ data or processed data to Central Server
- Transmitter (optional)
 - Satellite uplink signal transmission
 - Encoded and modulated IQ data from Centralized SDR at Central server and transmits uplink signal to satellite.

Kyushu Institute of Technology, BIRDS Project

How use our GS network?

Go to: https://www.stellarstation.com/amateur and Sign up for an account

My StellarStation Amateur	Commercial	Account
	Upcoming passes	
	Satellite Ground Station	n AOS
	BugSat 1 Tokyo	00:50
	FalconSat 3 Tokyo	02:34
StellarStation Amateur	CUTE 1 Tokyo	04:50
Built on the StellarStation_platform, StellarSta	LilacSat 2 Tokyo	04:54
support for amateur UHF band satellites. Use invaluable telemetry data and schedule pass	StellarStation Amateur to access	06:28
network during a critical phase of launch.	CUTE 1 Tokyo	06:29

Kyushu Institute of Technology, BIRDS Project

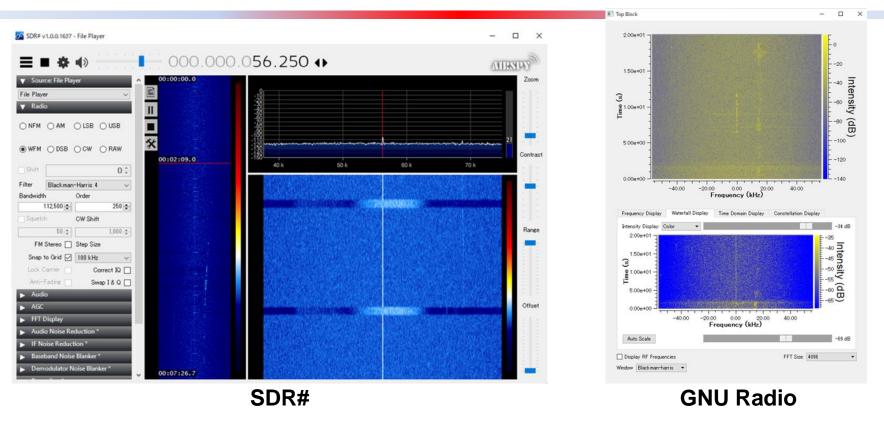
Select satellite and download data

Latest Telemetry 2 days of tracking left

i) How to decode the IQ data

Status	AOS (Local Time)	LOS (Local Time)	Duration	Max Elevation	Ground Station	
Upcoming	2018/06/19 13:09	2018/06/19 13:19	09:30	73°	Tokyo	Scheduled
Upcoming	2018/06/18 14:26	2018/06/18 14:35	08:49	21°	Tokyo	Scheduled
Upcoming	2018/06/18 12:51	2018/06/18 13:00	09:02	22°	Tokyo	Click for download
Downlinked	2018/06/17 14:07	2018/06/17 14:16	09:30	82°	Tokyo	Download
Downlinked	2018/06/17 06:09	2018/06/17 06:18	09:09	28°	Tokyo	Download
Downlinked	2018/06/16 15:23	2018/06/16 15:32	08:30	16°	Tokyo	Download
Downlinked	2018/06/16 13:48	2018/06/16 13:58	09:11	27°	Tokyo	Download

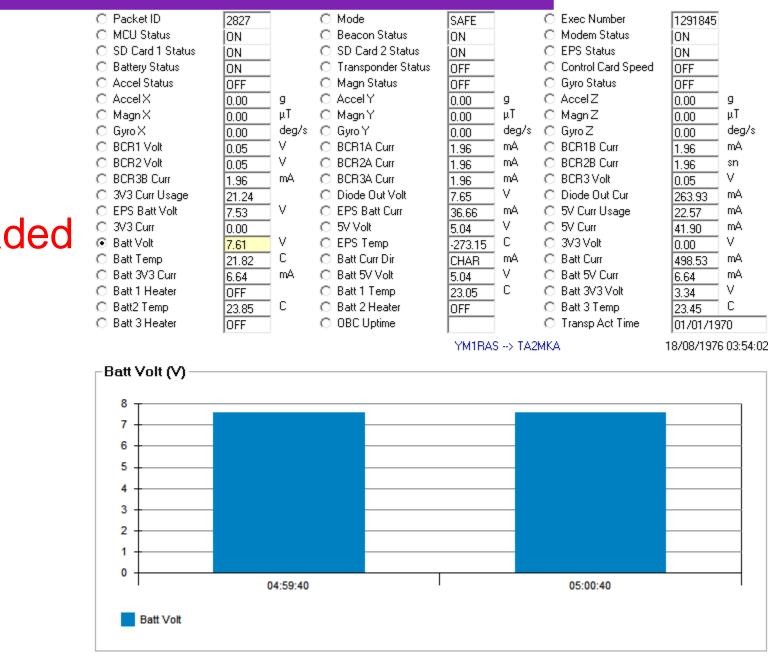
Use web based GUI to:


- Download telemetry (Raw Data) from satellites
 - See available passes across the world
- Demodulate / Decode in the cloud and view the Telemetry in browser.*

* To be available

© 2018 UNISEC. All rights reserved.

Re-processing satellite downlink data


The satellite downlink data can be re-play and processing by using **SDR#** and **GNU radio**

Kyushu Institute of Technology, BIRDS Project

* To be available

Downloaded Data

#1/2

University Space Engineering Consortium

4469

GLOBAL

۶I

D:\Amateurfunk\UBAKUSAT\ubakusat_12052018_0458.kss

How to join the Global Antenna Sharing Project with your Antenna

- Contact us to get a template of MoU.
- Review the MoU and make revisions that you deem necessary.
- Fill out Antenna Configuration Questionnaire: <u>https://goo.gl/forms/FNYyp</u> <u>PrzHNR1V5vu2</u>
- A Block Diagram of your ground station is required to be sent.

Further Benefits

UNISEC-Global provides Information and help on:

- How to operate a satellite
- Regulations and frequency coordination
- Ground Station Network Access
- Frequency Sharing

Questions? Thank you

Contact

Prof.Dr. Alim Rüstem ASLAN Istanbul Technical University Department of Space Engineering +90532 480 3449 aslanr@itu.edu.tr usttl.itu.edu.tr

> C/O UNISEC Office Central Yayoi 2F, 2-3-2 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan TEL: +81-3-5800-6645 Email: secretariat@unisec-global.org www.unisec-global.org

