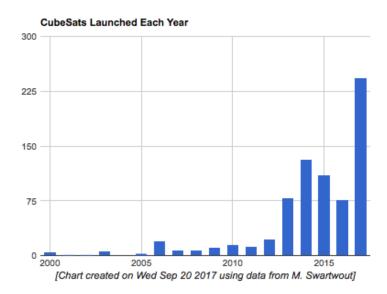
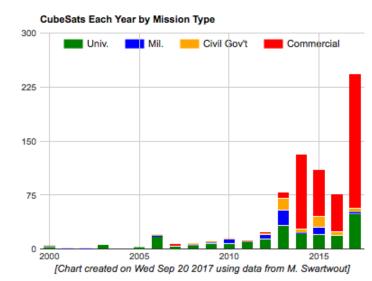


CubeSat/Small Satellite Lessons Learned

Ryan Nugent California Polytechnic State University, San Luis Obispo


> 5th UNISEC Global Meeting, Rome, Italy December 3rd, 2017


CubeSat Community Current State

 Thousands of developers worldwide

> Across academia, industry, and government agencies

- 750+ CubeSats have been launched
- No longer only an academic training tool or industry testbed
- Constant new entrants
 Solution New countries, new universities, new companies

CUBESAT

New Entrants Common Issues

- Common failures include deployable failures, power system failures, comm system failures
- First time university developers have low mission success rates
 - Most CubeSats are not able to be contacted
 - Difficult to determine cause of anomaly
- New entrants tend to make the same 'first-timer' mistakes

Most are easily avoidable

 How do we increase new entrant mission success?

Lessons Learned Discussion Main Topics

- Set Appropriate Scope for the Mission
- Establishing Program Structure
- Schedule
- Risk Management
- Design, Production, and Assembly
- Assembly
- Test, Test, Test
- Operations

CUBESAT

Group Discussion Summary

- Establish minimum baseline mission with modest success criteria
 - Stick to and defend these minimum requirements and goals
 - Do NOT allow requirements to be added after requirements have been decided
- Build an experienced team
- Rigorous documentation and reviews are important

G Helps to maintain continuity of knowledge

Reviews are very important
 Independent reviewers are very helpful

Group Discussion Summary

Maintain Schedule and Margin

Most on orbit anomalies attributed to lack of testing on the ground

- A good risk management process is very important for CubeSats
- Design for simplicity and robustness
- Test Early and Often

Performing fully integrated testing early will catch the most anomalies, greatly increases mission success

Group Discussion Notes

Set an Appropriate Scope for the Mission

- Establish a minimum baseline mission with modest success criteria
 - May have de-scope plan in place should one be needed
 - Stick to and defend these minimum requirements and goals
 - Do NOT allow requirements to be added after requirements have been decided
- Develop simplest spacecraft to fulfill mission
 Cal Poly/JPL IPEX mission, started as a 3U with 3axis ADC, ended as a 1U with no ADC
 - Met all mission requirements
- Stick with your expertise, don't do new science

Establishing Program Structure

- Build an experienced team
 - G Teams with more experience tend to have higher success rates
 - Mentors from industry help apply best practices and lessons learned to academic programs
 - Focus on the team's strengths and interests
 - Systems engineering is very important, must have during all phases of the project from conceptual design through operations
- Rigorous Documentation
 - University teams have high turnover rates, helps maintain continuity of knowledge
- Reviews
 - Mecessary evil, don't need to be formal but do need to be rigorous
 - · Independent reviewers are very helpful
- Have a small core team that communicates regularly
- At the university level, plan for turnover of students (they will graduate eventually)
 - Senior students should always train a younger student on their tasks

Schedule

- Assembly, Integration, and Test should be a large portion of the schedule
 - Maintain this portion of the schedule, as this is where anomalies are found
- Launches don't wait for CubeSats, be ready for the schedule crunch that will happen as delivery gets closer
 - Puts extreme pressure on the latter half of the schedule, usually on AI&T
 - G Have margin and contingency plans to maintain mission success
 - Work with Launch Integrator to find more schedule in case necessary
- Stick to your schedule, create milestones and stick to them

Risk Management

 A good risk management process is very important for CubeSats

G Do a risk assessment at the beginning

- What is new? What is single point of failure?
- Purchase multiple sets of hardware
 Use for 'drop in' replacements in case of failure, minimize schedule risk
- Software is always risk

General Section Sec

Risk to cost ratio

When choosing analyses or tests to perform, focus on easiest to solve and work up from there

Design, Production, Assembly

- Design for simplicity and robustness
 - Minimize deployables and keep them simple
 - Os Design for the worst case environment
- Employ fail-safes built into the satellite electronics
 - G Watch-dog timers, planned resets
 - Define what your safe mode, make sure your satellite can recover from safe mode
- Design for disassembly and re-work
 - Many issues are not discovered until the satellite is fully assembled
- Overdesign and overbuild for risk reduction
 - Manufacture or purchase extra parts, testing anomalies or mishandling of equipment will happen
 - On't design to the specifications in COTS components datasheets, apply values to de-rate them as appropriate, also test them to see how they behave
- Always have an omni directional antenna, at least as a back up

Design, Production, Assembly

- Perform inspection of all parts when they are received
- Clearly define tolerances
- Use 2 back out prevention methods for all fasteners
- Always check

Electronics that CubeSat become obsolete quickly
 Don't underestimate lead time for any component no matter how simple

Test, Test, Test!

- Subsystem testing important, integrated system testing is the most important
 - Most on orbit failures attributed to lack of integrated system testing
 - No matter how much time you have scheduled for testing, it won't be enough
 - Cal Poly develops a 'flatsat,' engineering test unit, and flight unit for most missions
- Performing full end-to-end system testing is important to perform as early as possible
 - Examples include: Command execution testing, Day In the Life tests, End-to-end Comms testing, Full Power system charge cycle
- Thermal Vacuum Testing best simulates space environment
 GRESOURCE intensive, if T-vac not available, perform testing at

Operations

- Don't underestimate the the difficulty of tracking and commanding a CubeSat
- Ground segment should be developed in parallel or before the CubeSat
- Analyze trends of your satellite
 Battery degradation, temperatures, etc.
- Practice operations on your own CubeSat and other CubeSats

Insert errors to see how operators respond