CanSat & Rocket Experiment('99~)

Hodoyoshi-1 '14

Water Quality/level Management by Micro/nano/pico-satellites

Team University of Tokyo

Nano-JASMINE '15

"Store & Forward" gets ground information

- UHF receiver onboard Hodoyohi-3 & 4 can collect data from ground Sensor Network (fixed points or mobile)
- S&F mission outline
- 1. Fixed or mobile sensors on the earth get ground information and transmit them to Hodoyoshi-3&4 when they fly over the area
- 2. Hodoyoshi 3&4 receive and store the information, and forward (transmit) it to Ground Stations when it flies over them

Application areas: disaster prediction, water level monitoring, forest data acquisition.....

Weak Signal Receiver for Data Collection Capability

ltem	Specification		
bit rate	100 bps, maximum 8 channels in		
	parallel		
Transmission duration	< 300 sec		
Transmission power from ground	20 mW		
Frequency band	920 MHz (no license of usage is required if using 20mW power)		

3U CubeSat "TriCom-1R" - Weak signal receiver from ground -

	Items	Values	Miscellaneous
	Size Weight	10x10x30cm < 3kg	3U size
S&F-ANT	OBC	"Bocchan"board	Internal made
	Power (average)	4W	AZUR GaAs cell
	Battery	Li-Ion 41 wh	LIBM
CAM	Downlink (H/K&data)	W 1.2kbps	460MHz AFSK "U-TRx"
S&F			
OBC,Sub-CAM	Uplink(H/K)	50W 9600bps	401MHz
	Attitude	Simple 3 axis	B-dot law only
GNSS MTQ,RW	RF Receiver	20mW RF power from ground	920MHz no license required
U-TRx	Actuators	magnet torquer despun wheel	"MTQ" "RW"
TC-ANT	Camera	GSD 314 m VGA @180km	"CAM"
S&F: M2M technology for IoT	Sub-Camera	GSD 67 m @600km	Five "Sub-CAM"

"Modified SS520"

Dedicated rocket for CubeSat by JAXA

Previous launch failed on Jan/2017 but will try it again !

Proposal of S&F Network

- One satellite only provides 4 x 10 min chance of data collection
- If the satellite fails, no backup is provided

- How about making 2U or 3U by many UNISEC countries so that we can have more time to collect data from ground ?
 - Rule: the country who provides one satellite can use all the satellites for data collection.
 - Standardization of data protocol and communication system should be discussed

Options and Our Supports

- Any Collaboration : Your Idea X Our Experience
- All options can include capability building programs

Your Bus × Our S&F Mission Board

Your Members × Our 3U/2U S&F Cubesat (build Together!)

Your Bus × Our Heritage Components

Discussion Items

- Definition of Communication Protocol
 - Which frequency to use?
 - How we can make multiple use of frequency?
 - Standard data format, speed, packet length
- Managemental issues
 - Finance
 - Launch opportunity
 - Ground operation
 - Technological support
- How we can start the activities?
 - Experiment using TRICOM-1R

Technological Issues (1)

Specifications of transmitter from ground

- i. RF power and input power, data rate, size of antenna, transmission intervals, etc.
 - Considering "water quality management" mission

Water Quality Sensor is not chosen yet (TBD)

Frequency > These factors will be decided after sensor/data are decided

Technological Issues (2)

Overall systems architecture

- i. How to deal with transmission "collisions"?
 - > CDMA, FDMA, TDMA ? ---- FDMA is suitable
- ii. How the transmitter knows satellites' coming?
 - i. Beacon from satellite trigger transmission
 - i. Ground receiver maybe turned on and off to reduce power consumption
 - ii. Time based (clock error should be considered)
 - iii. Transmitter turned on and off periodically
 - i. Find suitable ON-OFF timing sequence
 - iv. Hybrid (receiver ON just before satellite in vision)
 - v. Future: Wireless power from satellite to the sensor, and trigger the sensor to transmit the signal back
- iii. License of frequency usage: should be checked

Technological Issues (3)

Downlink from satellites

- i. Ground station concept, number, frequency (UHF or S Band) and Cost & Performance should be traded off
- ii. Collaborate with "Infosteller"
- iii. Experimental frequency would be adequate
- iv. Data storage and sharing way should be designed
- v. Downlink radio transmitter should be standardize, housekeeping data also into standardized packets
- vi. Encryption of data (example. Spain data to Ghana)
- vii. Decided based on cost factor, either S Band or UHF
- viii. Some countries can participate only with providing Ground Stations.
- ix. Mass production and order of GS may reduce cost

Technological Issues (4)

Design of ground sensor/transmitter system (Assuming 6 months without maintenance)

- i. Power: Solar cell ? Screw ? Wind mil ?
 - i. If used in river, use screw but requires maintenance
 - ii. Solar cell is suitable due to less maintenance
 - iii. Location based solution
- ii. Antenna:
 - i. Should be decided considering
 - i. Coverage requirement
 - ii. Communication speed
 - iii. Communication frequency
 - iv. User distribution
 - v. Candidates: Omni, patch, horn, helical antenna
- iii. Standard interface for various sensors
 - i. Serial communication would be adequate

Technological Issues (5)

Water quality monitoring device

- i. Should be small, cheap and low power
- ii. Endurable for long time
- iii. Accuracy requirement (specification)
- iv. Application dependent (level, chemical, pH, heavy metal, oil detection, temperature, application selection based on user needs)
- v. Possible information sources: Tunisian University (Monastir), ANU, mailing list from Rei (UNISEC)

Other possible applications

i. Each member should study other possibilities

Managemental Issues (1)

Who (what organization) will lead this international collaboration?

- Conceptual study (feasibility study, plan generation, etc) should be lead by Mr. Rakesh Chandra Prajapati
- UNISEC providing info to students to participate in the project
- Team with geological scientist to find the user requirement (saves time to find the mission or application)
- Strong will and sustainable long-time effort are required as many issues should be solved

Managemental Issues (2)

Funding for the system development and operation

- Benefit to human being may appeal to ADB, WB or other banks or JICA (Japan)
- Connect with Hydro power (fund)

Launch opportunity

- May appeal to some governments to get opportunity such as Japanese H-IIA/ISS launch
- Contact for KiboCube
- Epsilon should be also contacted (to IHI person)

Timeline and Action Items

First milestone is a meeting in ISTS (June, 2017). Until then, we should;

- Work for 6 months
- Collect info, collect regions, people
- Find someone with Water quality knowhow
- Keep email contacts informed

Meeting on June 3 to 9, 2017 in ISTS (with Skype with those who cannot come)

• At the meeting, we will define next phase work, discuss project feasibility