Requirements for Guidance, Navigation and Control of Deep Space Cubesats

Discussion Session Outputs

Challenges

- Radiation effects → Special Shielding
- Communication at interplanetary distances
- Propulsion System Limitation \rightarrow Solar Sail, Gravity Effects, Ion Thrustres
- Position Determination \rightarrow We cannot use GPS
- Reduncy is needed
- Physical Impact \rightarrow Shielding
- Power Issues
- Least 6u Cubesat
- Launcher→Most launchers go to LEO or GEO

LEO ADCS Elements

Sensors

- Sun Sensors
- Earth/HorizonSensors
- Star Sensors
- Magnetometers
- Rate Gyros
- GPS

Actuators

- Momentum/Reaction Wheels
- Magnetorquers/Magnetic Control
- Thrusters

Deep Space ADCS Elements

Sensors

- Sun Sensors→In the Solar System
- Earth/Horizon Sensors
- Star Sensors → Attitude, Position, Angular Rates
- Magnetometers
- IMU
- GPS (for some missions, like Moon) → RF sensors, Camera (Vision based), XRAY Pulsar Navigation (Needs Atomic Clock), LIDAR, Laser altimeter

Actuators

- Momentum/Reaction Wheels
- Magnetorquers/Magnetic
 Control
- Thrusters
 - Water Propulsion (Easy to implement, but lower lsp alternative)
- Solar Sail (Spinning Solar Sail for attitude)

GNC Automation could be beneficial

- If the communication delays effects control,
- If there is high unknown disturbances like missions to near-Earth objects (NEO),
- Constellation
- Entry, Descent and Landing (EDL)

Thank You!