

Satellite Ocean Tracking Currents for Marine Searching and Rescue Aekjira Kuyyakanont & Phongsakorn Meemak Kyushu Institute of Technology

71% of the Earth is ocean

What is Ocean Currents?

Why is it important to observe the ocean currents?

Marine accident: Ship sinking

Marine accident: Oil/Chemical Spill

Primary Objectives To predict ship/airplane positions in the ocean in emergency situation

Currents

To analyze oil/chemical spill movement direction. **Secondary Objective** To monitor the ocean current changing for the Earth's climate

> Reunion island

Last Radar Contact

Objectives Kuala Lumpur

Search area

Key Performance Parameters

- To update the data every hour

Water Temperature (Fahrenheit)	Exhaustion or Unconsciousness	Expected Time of Survival
32.5 degrees	Under 15 minutes	Under 15 to 45 minutes
32.5 to 40 degrees	15 to 30 minutes	30 to 90 minutes
40 to 50 degrees	30 to 60 minutes	1 to 3 hours
50 to 60 degrees	1 to 2 hours	1 to 6 hours
60 to 70 degrees	2 to 7 hours	2 to 4 hours
70 to 80 degrees	2 to 12 hours	3 hours to indefinite
Over 80 degrees	Indefinite	Indefinite

To acquire the Sea Surface Temperature (SST) using infrared camera

How hypothermia affects most adults

Electrical Power System

Structure

Communication

Command & Data Handling

Attitude Determination and **Control System**

Source: Clyde Space

Imaging Payloads

Ground Resolution

Mid-Wave Infrared Camera

Orbital Parameter

- Altitude: 550 km
- Inclination: 98° **Ground Resolution**
- 492 m²

Image size

• 314.8km x 251.9km at nadir pointing

LWIR operation **MWIR** operation

LWIR will operate during day side MWIR will operate during night side $\overline{\mathbf{Y}}$

Concept of system operation

11

Satellite infrared radiometers for SST

MODIS sensor

AVHRR sensor

VIIRS sensor

ATSR-1_{Source}: ESA

(A)ATSR sensor

- EnviSat Satellite
- Broad swath (~ 500km)
- ~1km² resolution Broad swath (~2330km)
 - ~1km² resolution
 - 12

Bird Ground Station Network

- Japan
- Ghana
- **Nigeria**
- Bangladesh
- Mongolia
- **Taiwan**
- Thailand
- Bhutan
- Philippine
- Malaysia

Orbit/Constellation Description

Source: wikipedia

visible sat = 12

Global Positioning System Constellation
24 satellite GPS constellation
Six orbit planes
55° inclination
60° right ascending node of each orbit

Drifter Buoys

Drifter Buoys Data: Sea Surface Temperature • Air pressure • Wind Salinity Subsurface Temperature

Cruise Weather Ships

N65°56'47.29 W127°37'01.87 (65.9465, -127.6172)

Sea Surface Temperature

56 52 58 74 80 85

ea Surface Temperature (F)

Source: www.livecruiseshiptracker.com

Concept of Operation

How to predict the object direction?

Oil rig explosio

© EPA

Source: Dailymail

antana .

18

How to predict the object direction?

MADAGASCAR

Mauriti

AFRICA

La Reunion

Ocean Currents

Se

Kuala

MALAYSIA

Search Area

19

Implementation Plan

THE GLOBAL GOALS For Sustainable Development

1994 3

1

Thank you for your attention Question?

Appendix

Sea Surface Temperature Algorithm

- The form of the daytime and night-time algorithm for measurements in the long wave atmospheric window is:

 $SST = c_1 + c_2 * T_{11} + c_3 * (T_1)$

where T_n are brightness temperatures measured in the channels at n mm wavelength, T_{sfc} is a 'climatological' estimate of the SST in the area, and θ is the satellite zenith angle. - The MODIS night-time algorithm, using two bands in the 4mm atmospheric window is:

$$SST4 = c_1 + c_2 * T_{3.9} + c_3 * (T_{3.9} - T_{4.0}) + c_4 * (\sec(\theta) - 1)$$

Note, the coefficients in each expression are different. They can be derived in three ways:

- empirically by regression against SST values derived from another validated satellite instrument - empirically by regression against SST values derived surface measurements from ships and buoys - theoretically by numerical simulations of the infrared radiative transfer through the atmosphere

$$(T_{11}-T_{12}) * T_{sfc} + c_4 * (sec (\theta)-1) * (T_{11}-T_{12})$$

Source: Satellite Oceanography: Sea-Surface Temperature and Climate Data Records Peter J Minnett Rosenstiel School of Marine and Atmospheric Science, University of Miami, USA

