Practical Methods in Teaching CanSat

Mohammed Khalil Ibrahim, Ph.D. Aerospace Engineering – Faculty of Engineering – Cairo University – Egypt. Aerospace Engineering – College of Science and Technology – Nihon University, Japan

Outline

- Simplified Models in Engineering Education
- What is CanSat?
- Methods in Teaching CanSat Education
 - Collaborative Learning
 - Project Based Learning / Learn-by-doing
- Typical CanSat Syllabus
- Concluding Remarks

Simplified Models – Fluid Engineering

Kelvin-Helmholtz instability

Naiver-Stokes Equations (1822)

$$\begin{aligned} & \text{Continuity:} \qquad \frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0 \\ & \text{X-Momentum:} \quad \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho uv)}{\partial y} + \frac{\partial (\rho uw)}{\partial z} = -\frac{\partial \rho}{\partial x} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \right] \\ & \text{Y-Momentum:} \quad \frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho uv)}{\partial x} + \frac{\partial (\rho v^2)}{\partial y} + \frac{\partial (\rho vw)}{\partial z} = -\frac{\partial \rho}{\partial y} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} \right] \\ & \text{Z-Momentum} \quad \frac{\partial (\rho w)}{\partial t} + \frac{\partial (\rho uw)}{\partial x} + \frac{\partial (\rho vw)}{\partial y} + \frac{\partial (\rho w^2)}{\partial z} = -\frac{\partial \rho}{\partial z} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right] \\ & \text{Energy:} \\ & \frac{\partial (E_T)}{\partial t} + \frac{\partial (vE_T)}{\partial x} + \frac{\partial (wE_T)}{\partial z} = -\frac{\partial (up)}{\partial x} - \frac{\partial (vp)}{\partial y} - \frac{\partial (wp)}{\partial z} - \frac{1}{Re_r Pr_r} \left[\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right] \\ & + \frac{1}{Re_r} \left[\frac{\partial}{\partial x} (u \tau_{xx} + v \tau_{xy} + w \tau_{xz}) + \frac{\partial}{\partial y} (u \tau_{xy} + v \tau_{yy} + w \tau_{yz}) + \frac{\partial}{\partial z} (u \tau_{xz} + v \tau_{yz} + w \tau_{zz}) \right] \end{aligned}$$

Simplified Models – Space Engineering

1998

- Egyptian Space Program was launched (Egypt-Sat1)
 - Complex System
 - Expensive System
 - Long Development Time
 - Space Agency
- CanSat was proposed by Prof. Robert Twiggs

Image Courtesy of Boeing

Robert Twiggs

Sayed Dessoki Hassan

Physical Simplification

CanSat

What is the CanSat?

The CanSat provides an affordable way to **acquire** the students with the basic **knowledge** to many challenges in **building** a satellite. Students will be able to **design** and **build** a small electronic payload that can fit inside a coke can. The CanSat is launched and ejected from a rocket or a balloon. By the use of a parachute, the CanSat slowly descends back to earth performing its mission while transmitting telemetry. Post launch and recovery data acquisition will allow the students to analyze the cause of success and/or failure.

Ground Station PC

Main features of CanSat

- Very Simple Satellite System
- Short Development time (few days one year)
- Low Life Cycle cost.
- Excellent Educational tool for many engineering disciplines

CLTP Syllabus and Methods: CLTP-1

- Date: Feb 11 March 11, 2011
- Hosting institute: Wakayama University
- Host Professor: Hiroaki Akiyama
- Teaching Method: "Animal Sprit"

Basic / Advanced CanSats: CLTP-1

Basic CanSat

Rover-Back CanSat

Fly-Back CanSat

CLTP-1 Participants

- 12 Participants
- 9 countries (Algeria, Australia, Bangladesh, Egypt, Guantanamo, Mexico, Nigeria, Peru, Turkey)

Learning Approach

"Animal Sprit" = Collaborative Learning

- Small groups work with peer interaction leads to better learning outcomes
 - Increase the depth of learning
- Group size and composition matters
 - > 2-10 members
 - Set the goal, e.g. productivity, maximize performance of low performance participants.
- Peer feedback and support can be as useful as instructor feedback and support.

Learning Cycle

Systematic approach to skill building

CLTP Syllabus and Methods: CLTP 5-7

Professor Masahiko Yamazaki

Communication and Ground Station

Nihon University

- 1. Online Lecture Series Portion
 - Four Segments
 - One month
 - Total of 13 hours
 - Assessment with 50% passing grade

CLTP Syllabus and Methods: CLTP 5-7

- 2. Hands-on Training Portion
 - Date: Sep.21 Oct. 2, 2016
 - Hosting institute: Hokkaido University
 - Host Professor: Tsuyoshi Totani
 - Teaching Method: Project Based Education

i-CanSat

i-CanSat

Participants

- 8 Participants
- > 7 countries (Dominican Republic, Egypt,, Magnolia, Myanmar, Nepal, Peru, Serbia)

Project Based Education (Learn-by-doing)

- Relevance improve retention
 - Allow to retain more information/concepts
- Practice allows integration of knowledge
 - Software/Hardware integration.
- Application leads to generalization
 - CubeSat and Large Spacecraft
- Depth of understanding improves with synthesis and integrations

Blooms Taxonomy (Different level of Knowledge)

Benjamin Bloom. 1956

Knowledge Verbs

Evaluation	Appraise, assess, choose, compare, criticize, estimate, evaluate, judge, measure, rate, rank, revise, score, select.
Synthesis	Arrange, assemble, collect, compose, construct, create, design, formulate, integrate, manage, organize, plan, prescribe, propose.
Analysis	Analyze, appraise, calculate, categorize, compare, contrast, debate, diagram, differentiate, examine, inventory, question, test
Application	Apply, calculate, demonstrate, employ, examine, illustrate, interpret, operate, practice, schedule, sketch, solve, use.
Comprehension	Compute, describe, discuss, explain, identify, locate, report, review, tell, translate.
Knowledge	Define, repeat, record, list, cite, name, relate, review.

or Complex

Cognitive Behavior

Simple

CanSat Training Course Syllabus

Description:

- In this training course the participants will have the opportunity to learn different aspects of satellite subsystems through introductory set of lectures followed by hands-on training that cover the following topics:
 - Microcontroller Programing
 - Sensor and Actuators Interfaces
 - GPS Interface, configuration, and data extraction.
 - Communication Subsystem (Xbee)
 - PCB Fabrication Technique
 - Soldering Technique
 - Rapid Prototyping (Laser Cut, 3D printer, CNC)
 - Parachute Design and Fabrication
 - Ground Station Software (Processing and Labview)
 - Project Management
 - System Engineering
 - > Drop test, data analysis and presentation.
- Target participants: Undergraduate Engineering Students
- Duration: two weeks, Project: one week

Course Learning Outcomes

- Understand the satellite systems
- Develop software to Acquire data from sensors and send commends to actuators.
- Design the CanSat's Structure and main PCBs.
- Design and Fabricate of Parachute.
- Practice the Project Management (time, HR, cost, risk)
- Practice the System Engineering (PDR, CDR)
- Analyze the acquired sensors' data/source of failure.
- Evaluate and Criticize their peers CanSats.

Advanced CanSat - Capstone Projects

ARLISS 2014

CUBESAT

ARLISS 2015

QUADCOPTER

ARLISS 2016

Concluding Remarks

- Project based learning is the most proper method to teach CanSat.
- CanSat proved to be a versatile and customizable educational tool in Space Engineering as well as in Computer, Robotics, Software, and Communication Engineering.
- CanSat deepen the understanding and the retention curriculum related knowledge.