

Joint Global Multi-Nation Birds; Developing Nations' Testbed for Space Technology towards Sustainable Space Program

Taiwo Raphael TEJUMOLA, BIRDS Project Members, BIRDS Partners, Mengu CHO

Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Kitakyushu, Japan

> 7th Nano-Satellite Symposium, Kamchia. Bulgaria October 18th-23rd. 2016.

- Introduction: Let's go Lean
- BIRDS Satellite Project
- BIRDS System Configuration and
- © Satellite Operation Strategy
- System Development Strategy
- Conclusion & Future Plans

Introduction

Global participation in space activity is growing as satellite technology matures and spread due to proliferation of *Lean Satellites (1kg - 50kg)*

Lean satellite project

- Reduction in space mission cost and delivery time.
- ◎ Acceptance of higher mission risk and fragility.
- ◎ More responsive to world events and end user needs.
- [©] More economical sustainable business model for space industry.
 - Developing countries can adopt this model.

K Practical Lean Satellites at Kyutech

HORYU-1 (1U) 2006-2010 Not launched

HORYU-II (30cmx30cmx30cm) 2010-2012 Launched on May 18, 2012

Shinen-2 2013-2014 Launched on Dec. 3, 2014

HORYU-IV 2013-2016 Launched on Feb. 17, 2016

AOBA VELOX-III 2014-To be launched in 2016

BIRDS constellation 2015-To be launched in 2017

AOBA VELOX IV 2016-To be launched in 2018 ⁵

BIRDS Project

Joint Global Multi-Nation Birds (JGMNB), a satellite program for non-space faring countries. *Shortly called as "BIRDS Project"*

Mission Statement

By successfully building and operating the first national satellite and making the foremost step toward indigenous space program at each nation.

Project features

Essential Values

- Human network to achieve innovative System Engineering.
 - Demonstrate that a 1U CubeSats can be built and operated successfully in a time frame shorter than 2 years even for countries with limited (or zero) satellite experience with proper design and planning.
 - Starting a **sustainable and robust space program** with minimum budget at universities in emerging or developing countries.
 - **Competition and collaboration** among student members accelerate satellite development process and enhance the satellite quality.
- ◎ International Ground station network for CubeSat.
 - Obtain key experiences regarding operation of satellite constellation.
 - **Synergetic mission value and capability** via international operation.

Missions: On-board missions

- Take photograph of homeland via onboard cameras (CAM) Using 2 Cameras (SCAMP at 0.3MP, OV5642 at 5MP).
- Digi-singer Mission (SNG) Exchange of voice data from satellites to Ham Radio receivers (UHF band)
- Measure Single Event Latch-up in orbit (SEL)
 By taking log of microcontroller reset events over period of time.

Missions; Ground based missions

 Determination of Satellite Precise Location (POS) without GPS Using analysis of TOA from time lag among multiple ground stations

- Atmospheric Density
 Measurement (ATM)
 Using Orbital analysis from precise satellite tracking information (POS).
- Demonstrate Ground Station
 Network for CubeSat Constellation (NET)

System Configuration

Features

- Constellation of four (4) identical 1U CubeSats.
- Share **same frequency** for TM & TC (UHF/VHF).
- Modularized and Less harness design.
- Using Backplane style introduced by University of Wurzburg (Germany) UWE-3.
- Only single board for OBC, COM and EPS.

Main board and Backplane Designed by Sagami Tsushin Co.,Ltd

Design and Configuration

Modularized and less harness configuration

- Deployable UHF_9600bps
- Patch UHF_1200bps
- OVHF Patch Antennas;
- Two UHF transmitters
 - (9600bps and 1200bps)
- VHF receiver;
- Battery (3 series 2 parallel)
 - Ni-MH batteries, 10 solar cells;
- Passive attitude control system
 - using hysteresis damper and
 - permanent magnet;

Internal Configuration

External Configuration

Solar Panel
Deployable VHF Antenna
Rail
SCAMP camera
OV camera
UHF Patch
Antenna
Deployable UHF Antenna

Operational Strategy

Ø 7 Ground stations and 4 CubeSats.

Innovative missions possible.

© Complete Mission failure unlikely.

© Each Satellite have 2.4hour downlink time.

• 3 times more than using 1 Ground station

There are benefits in Number

Kyushu Institute of Technology, BIRDS Satellite Project

BIRDS Ground Station Network

• Uplink command contain header specifying the targeted satellite

© CW reference command is designed to halt all RF transmission

System Development

Development Environment

- © Students carry out all system Engineering tasks.
 - Making decisions and system documents.
- Elimination of waste
- Movement, waiting and communication.
- Colocation: All students stay in 1 room.
- All satellite development, review and testing are done in same building.

Managing Risk

Conclusions

- BIRDS Satellite Project is undertaken by 15 students from 6 countries (Japan, Ghana, Mongolia, Nigeria, Bangladesh and Thailand).
- Lean Satellite project is used in the development of the CubeSats.
- BIRDS EM environment tests have been completed and the design shows sufficient resilience against environmental tests.
- The project is at the Flight Model development and safety review.
- The 4 CubeSats are expected to be delivered to JAXA in January,
 2017 for ISS deployment in April 2017 (TBD).
- Students from developing countries shall return home and start a sustainable space program.

Thank you for your attention

Principal Investigator: cho@ele.kyutech.ac.jp Project Manager: n350949r@mail.kyutech.jp

Joint Global Multi Nation Birds

http://birds.ele.kyutech.ac.jp/

Appendix

