

Клъстер АЕРО-КОСМИЧЕСКИ ТЕХНОЛОГИИ, ИЗСЛЕДВАНИЯ И ПРИЛОЖЕНИЯ Cluster AERO-SPACE TECHNOLOGIES, RESEARCH AND APPLICATIONS

7th Nano-Satellite Symposium and the 4th UNISEC-Global Meeting

Low Profile Tracking Ground-Station Antenna Arrays for Satellite Communications

Mario Gachev^{1,3}, Plamen Dankov^{2,3}

¹ RaySat Bulgaria Ltd., RAS; ² Sofia University "St. Kliment Ohridski"; ³ Cluster for Aerospace Technologies, Research and Applications (CASTRA). Sofia, Bulgaria.

Outline

- New ITU Frequency Bands Allocated for Small Satellites
- Antenna Arrays versus Reflectors at High Frequencies
- Low Profile Antenna Arrays
- Control and Tracking of Satellite Terminal Antennas
- "On-the-Move" Antenna Systems and Design Examples
- Conclusion and references

High Gain Ground Station Antennas

Using high-gain antennas and higher frequency bands are decisive in order to achieve high data rate communication with small satellite missions

Simplified link equation - carrier to noise spectral density

uplink
$$\Longrightarrow \frac{c}{N_0} [dB/Hz] = EIRP_{GS} + \left[\frac{G}{T}\right]_{sat} - LOSS + 228.6$$

For small satellite $G \approx 5 - 7 \ dB$
 $T \approx 190 \ K^0 \ and \frac{G}{T} \approx -15 \ dB/K$
downlink $\Longrightarrow \frac{c}{N_0} [dB/Hz] = EIRP_{sat} + \left[\frac{G}{T}\right]_{GS} - LOSS + 228.6$
For small satellite $EIRP = 10 \ logP_{sat}G_{sat ant} \approx 10 \ dBW$
 $R_b = \left(\frac{C}{N_0}\right) - \left(\frac{E_b}{N_0}\right)$ Simplified data rate equation
 $R_b = 10 \ logr_b$ Data rate $B = \frac{R_b}{\Gamma}$ Required radiochannel bandwidth
Spectrum efficiency

Satcom on-the

Tracking High Gain Antennas

- High gain antenna concentrates energy in the direction toward satellite forming a sharp beam
- In order to support required link reliability antenna needs to track the satellite
- The following communication scenarios are typical for high gain tracking antennas
 - Mobile antenna communicating with geostationary satellite
 - Fixed ground station antenna communicating with non geostationary satellite (LEO, MEO or HEO)
 - Mobile station communicating with non geostationary satellite

International Amateur Satellite Frequency Allocations

Range	Band	Letter	Allocation	Preferred sub band	User status	Notes
HF	40m		7.000 MHz-7.100 MHz		Primary	
	20m		14.000 MHz -14.250 MHz		Primary	
	17m		18.068 MHz-18.168 MHz		Primary	EARB
	15m	н	21.000 MHz-21.450 MHz		Primary	EARB
	12m		24.890 MHz-25.990 MHz		Primary	EARB
	10m	А	28.000 MHz-29.700 MHz	29.300 MHz- 29.510 MHz	Primary	EARB
VHF	2m	V	144.000 MHz-146.000 MHz	145.800 MHz- 146.000 MHz	Primary	
	70cm	U	435.000 MHz-438 MHz		NIB	
UHF	23cm	L	1.260 GHz-1.270 GHz		NIB	Only uplink allowed
	13cm	S	2.400 GHz-2.450 GHz	2.400 GHz- 2.403 GHz	NIB	
	9cm	S2	3.400 GHz -3.410 GHz		NIB	Not available in ITU region 1

International Amateur Satellite Frequency Allocations -Cont.

Range	Band	Letter	Allocation	Preferred sub band	User status	Notes
SHF	5cm		5.650 GHz-5.670 GHz		NIB	Only uplink allowed
			5.830 GHz-5.850 GHz		Secondary	Only down link allowed
	3cm	Х	10.450 GHz-10.500 GHz		Secondary	
	1.2cm	К	24.000 Ghz-24.050 GHz		Primary	
	6mm	R	47.000 GHz-47.200 GHz		Primary	EARB
	4mm		76.000 GHz-77.500 GHz		Secondary	
EHF			77.500 Ghz-78.000Ghz		Primary	
			78.000 GHz-81.000GHz		Secondary	
	2mm		134.000 GHz-136.000 GHz		Primary	EARB
			136.000 GHz-141.000 GHz		Secondary	
	1mm		241.000 GHz-248 GHz		Secondary	
			248.000 Ghz-250.000 GHz		Primary	EARB

NIB=Use is only allowed on a non-interference basis to other users;

EARB=Entire Amateur Radio Band

REFLECTOR Versus ARRAY Antennas

Advantages and Disadvantages

In-motion Reflector Antenna

- Relatively large sweep volume
- Multiband operation easy to achieve
- Relatively low cost per dB Gain
- Mechanical beam pointing

In-motion Array Panel Antenna

- Small form factor, lower profile
- Shape and size can be tailored
- Efficient volume utilization
- Comparable performance even for highly asymmetrical shapes
- Different beam pointing optionsmechanical, electronic or mixed

Satcom on

Low Profile Antennas

Design approaches

- Low profile is highly desirable for reduction of visual signature
- Array technology provides options for beam steering, profile and performance optimization
- Zenith panel full electronic or mixed (electronic-mechanical) beam steering and very low profile
- *Tilted panel* fully mechanical or mixed beam steering, performance optimization
- Multi-panel mechanical steering, optimal performance for a given volume

Satcom or

Fig. 1. Flat-panel antenna configurations

Control and Tracking of Satellite Terminal Antennas

Satcom on-the-mo

Tracking antenna block diagram

Close-loop tracking technique using "tracking beams"

Design example- Multi-Panel SOTM – StealthRay 2000 on the move

Low Profile SOTM Antenna for Commercial Applications

IA SYSTEMS

Design example – StealthRay 250

Small Footprint SOTM Antenna for Commercial Applications

VA SYSTEMS

Satcom on-the-mo

Design example -Tilted-Panel SOTM – EagleRay 7000 on the move

High-performance SOTM for Commercial Applications

Low Profile SOTM - Typical Applications

Commercial Application

- Live satellite TV and Internet in cars, RVs and VIP vehicles
- Maritime satellite TV and Internet in yachts, cruise ships, ferries
- On-line fat pipe for custom content
- Telemedicine
- News gathering

Defense and Security Applications

- Military C4I on-the move
- Homeland and national security applications
- UAV broadband communications
- Rescue services
- First responders backup communications
- Backhauling

Design example -Full Electronic Beam Steering challenges

- Real estate space between array elements dictated by frequency and FOV
- Power consumption and heat dissipation
- Antenna efficiency planar array Gain degrades at low Elevation angles
- Complexity and cost conventional FSS and BSS services require high gain large aperture antenna

Full Electronic Control Tracking Antennas -design examples

First product was a Ku receive only antenna for passenger cars

- Antenna included 94 patches and was priced at \$800 to consumer
- Based on highly integrated proprietary GaAs MMICS

Mobile Video April 2006

Satcom on-

4 ports support two patches 22 mm² GaAs die in LTCC carrier matrix >100K's produced

MMIC control approach...

- High density, mixed signal GaAs and SiGe chips
 - 4 or 8 RF channels, digital block, flip-chip

- Antenna unit cell
 - Chip drives 2 or 4 radiating elements
 - Planar design for low cost, high reliability and minimal signature
- Unit cell multiplied to create a complete antenna
 - Tracking circuitry, up/down converters
 - Scalable design EIRP, G/T is proportional to array size

Satcom o

Technical Specification

- ODU dimensions: 280x240x23 mm
- ODU weight: 1.2 kg
- Frequency Band: 11.7 12.75 GHz
- Polarization: Linear (auto control)
- Cross Polarization: >18 dB
- Antenna G/T: -4.5 dB/° K@30° EL
- Tracking Rate: >60% second
- Elevation Angle Range: 30° -90°
- Azimuth Angle Range: 360° continuous
- **Power supply:** 10-16V; 20W

- Antenna board includes
 - 94 dual port patches
 - 47 RM4001 GaAs MMICs

Satcom on

- 188 single-stage LNAs
- Integrated GPS, CPU, LNB and power supply

2-Way PAA design example

- Dual aperture (Tx, Rx) antenna architecture
 - Rx and Tx apertures may be at different size, according to mission requirements
- 8-channels SiGe MMIC
- Up / down frequency conversion built into antenna module
 - Directly interfaces with modem at standard L-band interface
- Using standard PCB and SMT assembly technology

PAA Simplified Block Diagram

2-Way PAA System Architecture

RX Antenna

TX Antenna

Modem + Antenna Controller MLT/GLT 1000

Two-way Demo Installation

Mixed beam steering antenna design examples

- Lower cost and complexity alternative to full electronic beam steering antenna
- Allows for building "Full size" BSS antenna at "feasible" cost
- Receive only T2 antenna prototype build 2002 and successfully test on in-motion TV reception in Southwest USA
 - 2086 dual-port radiators
 - 780 discrete LNAs
 - 116 MMIC phase shifters
 - Terminal height: 6cm
 - Elevation Angle Range: 30° 90°
 - G/T: >10dB/K (within FOV)

Low cost mixed steering antenna design example

- T7 micro-antenna receive only
- Developed for CruiseCast service in 2008
- Affordable cost for consumer market
- Dedicated "eco system"
 - Spread spectrum and signal coding
 - Interleaving protocol for buffering
- Mobile broad band service in USA
 - 22 channels of live TV
 - 20 channels of Satellite Radio
 - Data: mapping, traffic, weather, advert.

Technical Specification

- Dimensions: 286x264x110 mm
- ODU weight: 1.35 kg
- Frequency Band: 11.7- 12.75 GHz
- Polarization: Linear (auto control)
- Cross Polarization: >18 dB
- Antenna G/T: > -2.3 dB/° K
- Tracking Rate: 45% second
- Elevation Range: +/-20° (from static tilt of 50°)
- Azimuth Range: 360° continuous

10.00-

5.00

0.00-

-5.00-

-10.00

-15.00·

-25.00-

-30.00 -

-35.00

-40.00

-45.00

-50.00-

-55.00

-60.00-

- 32 radiating elements
- 4 MMICs RM4001

Conclusions

- RaySat Satcom on-the-move
- Using high gain tracking ground station antennas can improve significantly data rate communicating with small satellites
- Using recently allocated microwave frequency bands for amateur satellite communications broadband links with small satellite missions can be provided
- Broadband satellite communication technologies developed for mobile users can be successfully applied for high data rate links with small satellite missions

THANK YOU

- Barak I., Gachev M., Boyanov V., Marinov B., Peshlov V., Stoyanov R., Compact Electronically Steerable Mobile Satellite Antenna System, Patent Application US 2009/0231186A1
- http://www.gilat.com/On-the-Move
- Kaplan I., Gachev M., Moshe B., Spirtus D., Application for Low Profile Two-way Satellite Antenna Systems, Patent No US 7,911,400 B2
- Barak I., Gachev M., Boyanov V., Marinov B., Peshlov V., Stoyanov R., Compact Electronically-steerable Mobile Satellite Antenna System, Patent Application US 2009/0231186A1