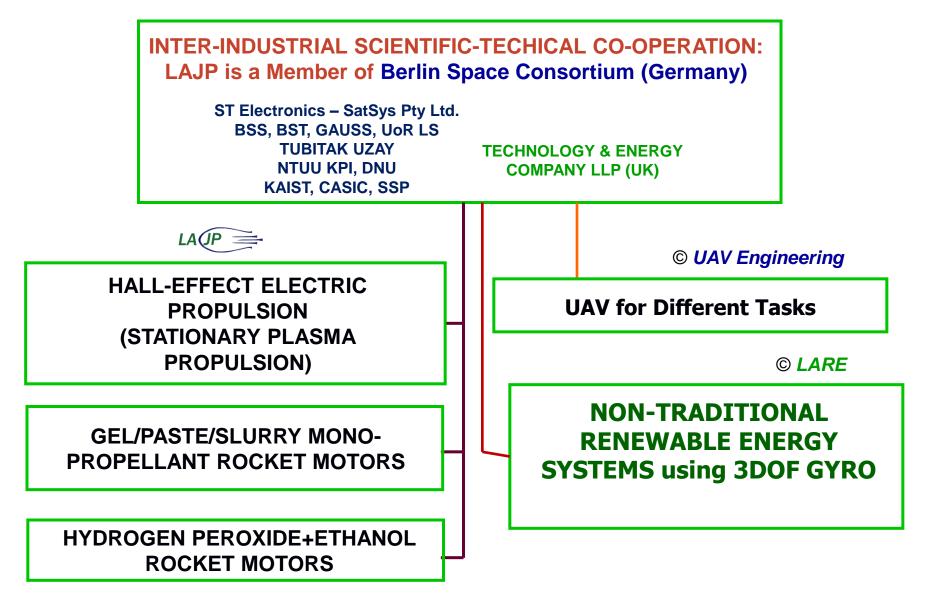


Electric-Rocket microPropulsion System for Nanosatellites like CubeSat

7th NanoSatellite Symposium, Varna, Bulgaria October, 2016

Briefly about LAJP Ltd.

The LAJP Brief History



LAJP was established in 2007 LAJP leases land and buildings at Dnipro National University and rents squares in Institute of Metallurgic Automatic LAJP has its own Vacuum Chambers as well it has access to the University's tool machines and test facilities. Full-Time Staff – 12 Specialists Part-Time Staff – 7 Specialists

Organizational Structure

Core Business Areas Description

- PRIMARY:

Commercial development, manufacturing and testing of plasma thrusters and propulsion systems for satellites with *milli-Newton* thrust

- SECONDARY:

R&D development, manufacturing and testing of chemical "green" rocket motors with high Newton thrust

- TERTIARY:

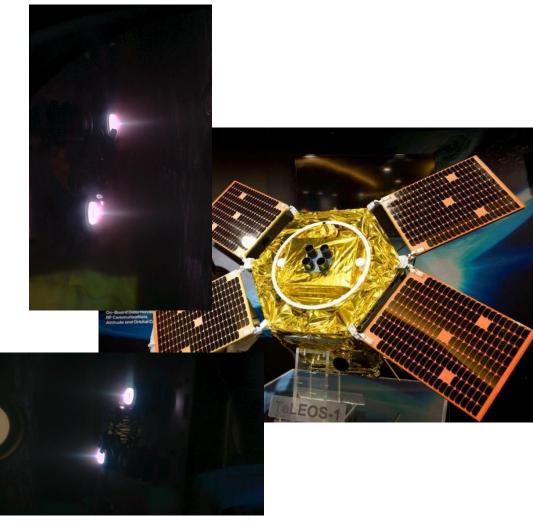
Development, manufacturing and testing of micro and small satellites; light rockets and LVs

The Current Problem

What exactly is a problem we are solving?

The Space Propulsion Systems are expensive devices.

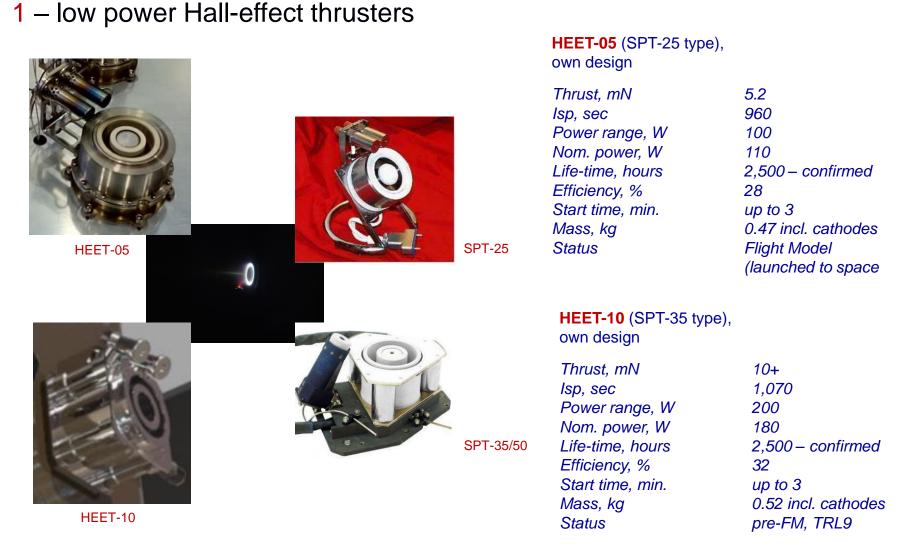
We propose <u>low-cost and technology innovative</u> approach to provide space propulsion for customers who produce **NanoSats/CubeSats** and want they live on orbits essentially more time than several months ... or fly to the Moon.



Current Developments and Main Business

Commercial Use of the LAJP Propulsion

It operates in space orbit from 16th December, 2015



Technical Specifications

Satellite Manufacturer	ST Electronics (Satellite Systems) Pte Ltd
Launch Date	Q4 2015
Mission Life	Fully redundant 5 years design life
Orbit	Type/Period - Near Equatorial Orbit/ 96min Inclination – 10 to 15 degrees Altitude - 550 kilometres
Satellite Mass	Approx 400 kilograms (approx 880 pounds)
Satellite Data Storage	64 Gbits solid state recorder
Communications (CCSDS Compliant)	150 Mbps (X-Band)
Attitude Determination and Control	3-axis stabilised
Mission Control	Multiple ground station support

2 – mid power Hall-effect thrusters

HEET-40

SPT-70

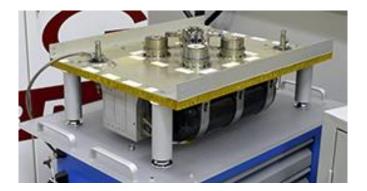
HEET-40 (SPT-70 type), own design

Thrust, mN
Isp, sec
Power range, W
Nom. power, W
Life-time, hours
Efficiency, %
Start time, min.
Mass, kg
Status

40 ~ 1,450 up to 720 650 3,200 42 up to 3 1.7 incl. cathodes QM, TRL9

HEET-85 (SPT-100 type), own design

Thrust, mN Isp, sec Power range, W Nom. power, W Life-time, hours Efficiency, % Start time, min. Mass, kg Status 85 ~ 1,500 1,300 – 1,450 1,350 6,400 46 up to 4 3.8 incl. cathodes pre-FM, TRL9


HEET-85

3 – cluster PS for small LEO satellites

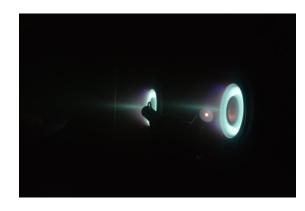
Propulsion System: made in 2013, test complex completed on Sep'2015, launched to space – Dec'2015.

No. of thrusters -4 heads with average resource \sim 2,500h each

Operation – by thruster's pair upon diagonal

Pair thrust, mN	1011
lsp, sec	1,070
Power range, W	4 x 100
Nom. pair power, W200	
Start time, min.	up to 3
Mass (incl. Xe), kg 29	
Functional period, years	up to 7
Status	FM

4 – HOLLOW CATHODES for Hall-effect and Plasma Ion thrusters



	Parameters	HCC-3	HCC-5
1	Discharge current, Amp	0.5 - 3	0.5 - 5
2	Operating voltage, V	12 5	15 5
3	Fuel consumption, mg/sec	0.07 – 0.25	0.12 - 0.28
		Xe, Kr, Xe+Kr, Ne, Ar, He, N2, H2, I and even O2	Xe, Kr, Xe+Kr, Ne, Ar, He, N2, H2, I and even O2
5	Fuel cleanness, %	Xe 5.0 2.0	Xe 5.0 2.0
6	Heater start voltage, V	12	12
7	Heater operation time, s	< 240	< 240
8	Start power consumption, W	36	58
9	Operation power consumption, W	15	25
10	Number of ignitions, times	> 1,800	> 1,000
11	Life-cycle, hours	~ 3,000	~ 3,000
12	Size (Diameter x Length), mm (without flank)	12.5*42	13*56
13	Mass, gr	48	62
14	Reliability	0.99	0.98
15	Development Status	FM	TRL9

4 – HOLLOW CATHODES for Hall-effect and Plasma Ion thrusters

Both electric Hall-effect and Plasma Ion thrusters use additional external electron sources called Cathodes. LAJP develops and manufactures its own cathodes types HCC-3 and HCC-5 from high-grade materials such as Cesium, which brings along a multitude of advantages.

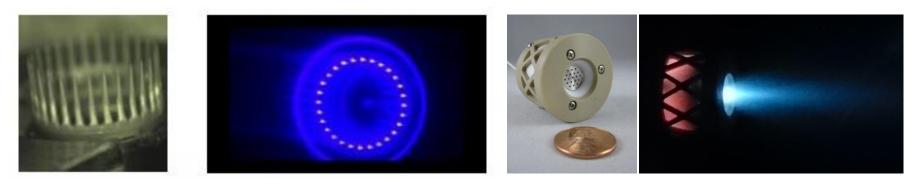
The Cesium Cathodes are highly tolerant for air, water and steam. They do not need high-purity operating gases, nor special protection for storing and handling. Moreover, the Cesium Cathodes need less power for electrons output, while they also do not need special casings.

For redundancy reasons, the cathodes for space applications are usually positioned as pair or double pair around the thruster. HCC-3 cathodes are being successfully operated on small satellites, while HCC-5 cathodes are more robust and suitable for laboratory applications.

Propulsion Proposal for NanoSats/CubeSats

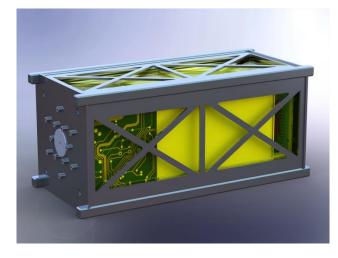
NanoSat/CubeSat Propulsion Systems

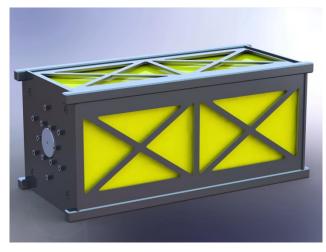
There are different types of propulsion systems for NanoSats/CubeSats:

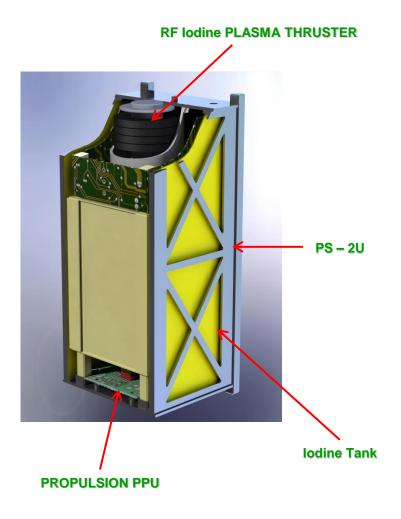

µicro PULSE PLASMA PROPULSION

CATHODE's PLASMA PROPULSION

ELECTRIC-HEATING LIQUID MONOPROPELLANT PROPULSION

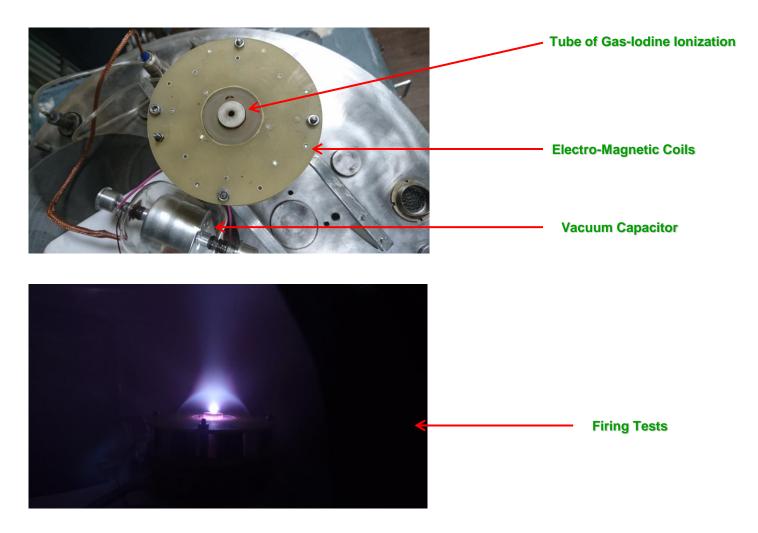

RF ION PLASMA PROPULSION


µicro ION PLASMA PROPULSION



LAJP NanoSat/CubeSat Propulsion Development

The propulsion system operates as innovative RF Plasma Motor using lodine as a Working Body:



LAJP NanoSat/CubeSat Propulsion Development

The tests into vacuum chamber:

LAJP NanoSat/CubeSat Propulsion Development

Received technical parameters:

8W of Power Consumption, 0.04 mg/s of Gas Consumption

12W of Power Consumption, 0.05 mg/s of Gas Consumption

Dry Propulsion System Mass*, kg	1.3	
Dimension (without fuel tank), mm	1U	
Fuel	Inert and Halogen	
	gases	
Fuel consumption, mg/s	0.040.1	
Neutralizer (cathode)	No	
Thrust, microN	3001,000	
Specific impulse, s	500800	
Power consumption, W	830	
Efficiency, %	~30	
Status, (TRL, model)	TRL6, EM	
Product delivery, months	57	
Product price	Low-cost	

* Propulsion System includes: thruster, feeding&flow control sub-system, power processing unit, telemetry unit

LAJP microPropulsion for CubeSats

CubeSats in Ukraine:

National Technical University 'KPI'

> CubeSat PolyTAN-1, launched 2015

PolyTAN-2 currently is in the ISS and soon will be launched by astronaut

PolyTAN-3 is in devepoment and will have 3U design to use RF lodine propulsion system

Possible design of the Moon 9U Sat

Propulsion System – RF lodine, only 5 kg of crystal lodine to reach the Moon

Thank You! Will be glad your questions.

