

Practical nano-satellite monitoring of ionospheric earthquake precursors

<u>Masashi Kamogawa</u>, Hide Nitta, Shoho Togo Department of Physics, Tokyo Gakugei University, Tokyo, Japan

Toshiyasu Nagao

Division of Earthquake Prediction, Volcano and Tsunami Researches Tokai University, Japan

Earthquake prediction

- Short-term earthquake prediction is still very difficult.
- For this prediction, observable precursors are required.
- Many kinds of precursors have been reported, but controversial.
- Ionospheric precursors are plausible phenomena for the prediction, because the statistical verification can simply be done using satellite.

Plausible atmospheric ionospheric precursors

??

Possibly magnetic-storm origin? Rishbeth, EOS, 2006 Flayer

No reproduction Clilverd et al., JGR, 1996 Optimistic statistics Michael, GRL, 1997

Es layer

Ionospher

E layer

Atmosphe

Lithosphe

Kamogawa, Eos (2006) with adding recent reviews

Liu et al. JGR (2006)

Nemec et al. GRL (2008) *,*JGR (2009)

> Hayakawa et al. JGR (2010)

Fujiwara & Kamo<mark>gawa et al.</mark> GRL (2004) Seismic

Global seismicity

(USGS, 2000-2011)

Satellites easily monitor global seismicity!

Satellite observation is useful!

Satellites easily monitor global seismicity!

Plausible precursor: Intensity decrease of VLF electromagnetic waves

How to identify a precursor?

We should know standard ionosphere . So, we construct standard ionospheric model.

Example of electron density map during geomagnetically quite period Model depends on..

Local time Latitude Longitude Altitude Solar flux Geomagnetic activity etc....

Accumulate residual values between model and observed data.

Note: This is a conceptual view.

Statistical study of pre-seismic VLF intensity decrease (=Background VLF intensity)

Comparison: Large and Small Magnitude EQ Real and virtual EQs

Nemec et al., GRL (2008)

DEMETER electric field measurement

Whistler wave intensity

DEMETER 2sec sampling survey-mode data

<mark>∆F=F</mark>-B

F:total power

B : baseline

ΔF roughly denotes the whistler wave intensity attributed to lightning activity.

Conclusion: Feasible Nano-Sat

- Two spherical electrode probes (3 cm radius) are equipped with the end of tow 40 cm booms.
- Bootstrap are set up at both the sides of probe.
- Only nighttime observation
- Two mode sampling
 - a. SURVEY MODE
 - (Continuous 1 sec)

Averaged electric field of 2-8 kHz after FFT analysis of 20 kHz sampling is observed. (180KB/day)

b. BURST MODE

(Event command request)

20kHz sampling electric field for two days is overwritten in on-board memory. 300s raw data within 4 hours before the earthquake is transmitted by the command.

(1.2 MB/day, 10 days = 1 EQs)

