

Reliable and Self-Configurable Flight Software Architecture for CubeSats

Te-Chuan Huang, Cheng-Ting Wu, and Jyh-Ching Juang Department of Electrical Engineering National Cheng Kung University, Tainan, Taiwan

Photo by NASA (July, 2014)

- Introduction
- PHOENIX Nanosatellite
- Flight Software Design
- Resilient Software Design
- Testing and Verification
- Conclusion

Introduction

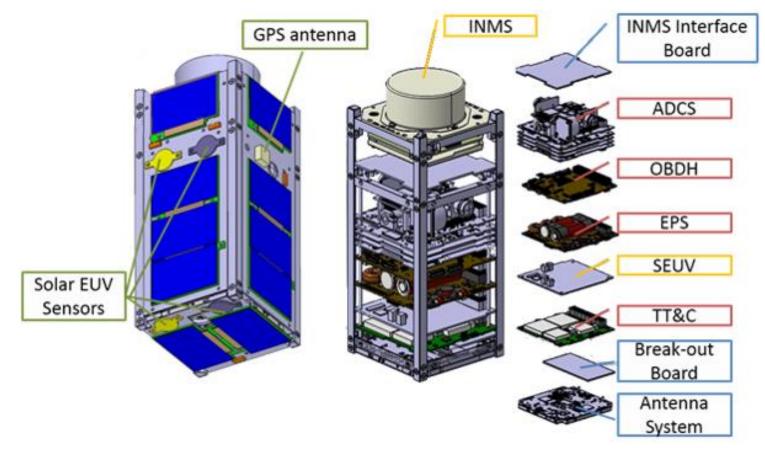
- PHOENIX Nanosatellite
- Flight Software Design
- Resilient Software Design
- Testing and Verification
- Conclusion

Introduction

- CubeSat
 - Standardized nanosatellite
 - Inexpensive cost and shorter development time
 - Commercial Off-The-Shelf (COTS) products available
- On Board Data Handling (OBDH) Subsystem
 - Hardware On Board Computer (OBC)
 - Software Flight Software (FSW)

Introduction

- Flight Software (FSW)
 - Limited resource
 - Unpredictable space environment
 - Responsible for many task
 - Hard to modify after launch
- Several techniques of design and implementation of reliable FSW are presented.

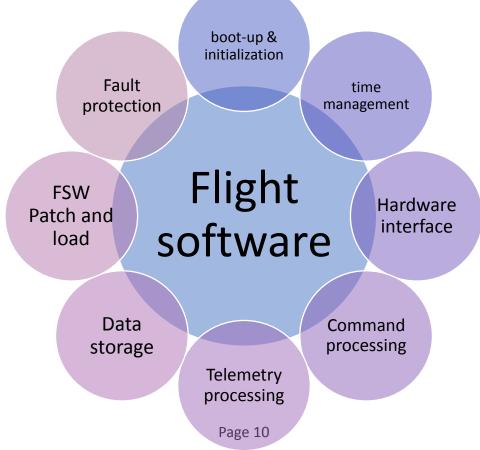

- Introduction
- **PHOENIX Nanosatellite**
- Flight Software Design
- Resilient Software Design
- Testing and Verification
- Conclusion

PHOENIX Nanosatellite

• PHOENIX is one of the CubeSat in QB50 project.

PHOENIX Nanosatellite

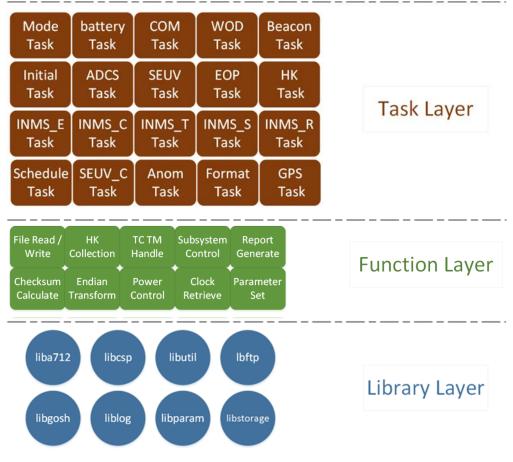
- QB50
 - EU's FP7 project managed by VKI
 - Carrying out atmospheric research within the lower thermosphere
- PHOENIX
 - Subsystem: EPS, OBDH, COM, ADCS, ANTS & GPSR.
 - Science payload: INMS and SEUV
- OBDH
 - GomSpace NanoMind A712D
 - FreeRTOS operating system



- Introduction
- PHOENIX Nanosatellite
- Flight Software Design
- Resilient Software Design
- Testing and Verification
- Conclusion

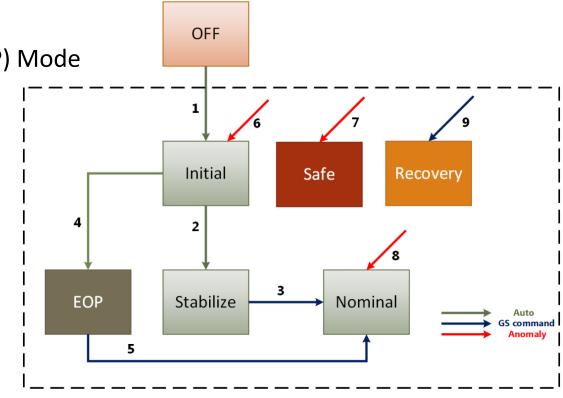
 Flight software is embedded in the On Board Data Handling (OBDH) subsystem in CubeSat and serves as a brain of the satellite.

Flight Software Design - Requirements -


- By analyzing the requirements, a system view from top to down helps the development of software.
 - Functional Requirements
 - Interface Requirements
 - Operational Requirements
 - Software Reliability Requirements
 - Software Safety Requirements

Flight Software Design - Architecture -

• Three layered architectures



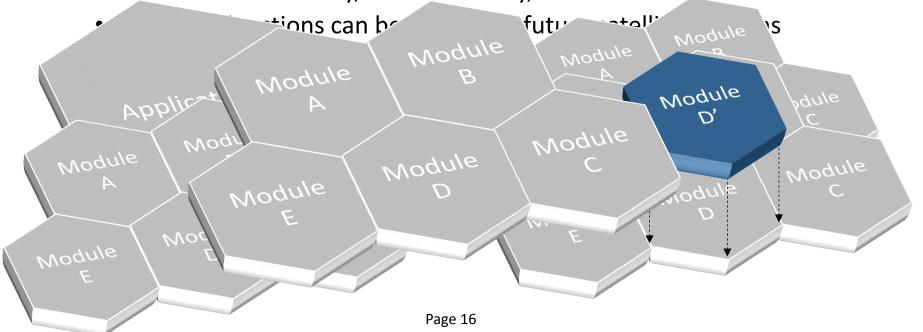
Flight Software Design - Operation Mode -

- Mode Transition
 - Initial Mode
 - Early Orbit Phase (EOP) Mode
 - Stabilize Mode
 - Nominal Mode
 - Safe Mode
 - Recovery Mode

AUTO: flight software trigger COM: telecommand trigger Anomaly: anomaly trigger

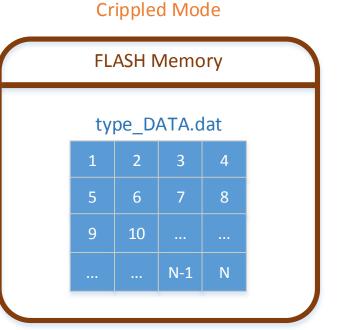
- Introduction
- PHOENIX Nanosatellite
- Flight Software Design
- Resilient Software Design
- Testing and Verification
- Conclusion

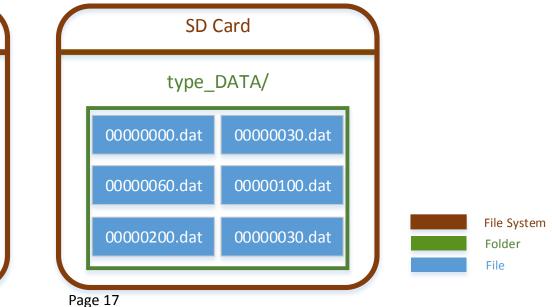
Resilient Software Design


- Several method proposed to increase the reliability of the FSW
 - Modular Programming
 - Redundancy Memory Design
 - Anomaly Handling
 - Self-Configurable Architecture
 - On Board Scheduling Management
 - In Orbit Software Update

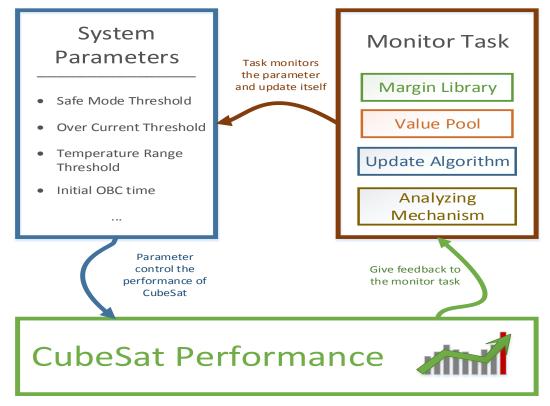
Resilient Software Design - Modular Programming -

- Features
 - Divide an application into several modules
 - Independent, interchangeable modules
 - Plug and play idea
 - Increase the flexibility, maintainability, and reusability of FSW



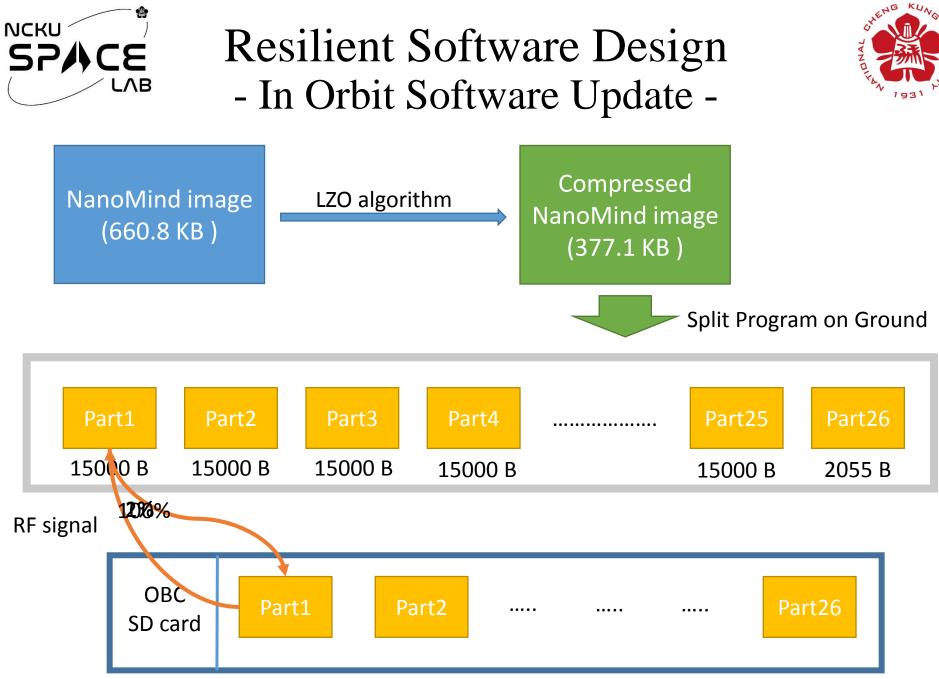

Resilient Software Design - Redundancy Memory -

- SD card partition /sd0 & /sd1
- Crippled mode
 - Backup solution
 - Use flash memory instead
 - Limited storage place

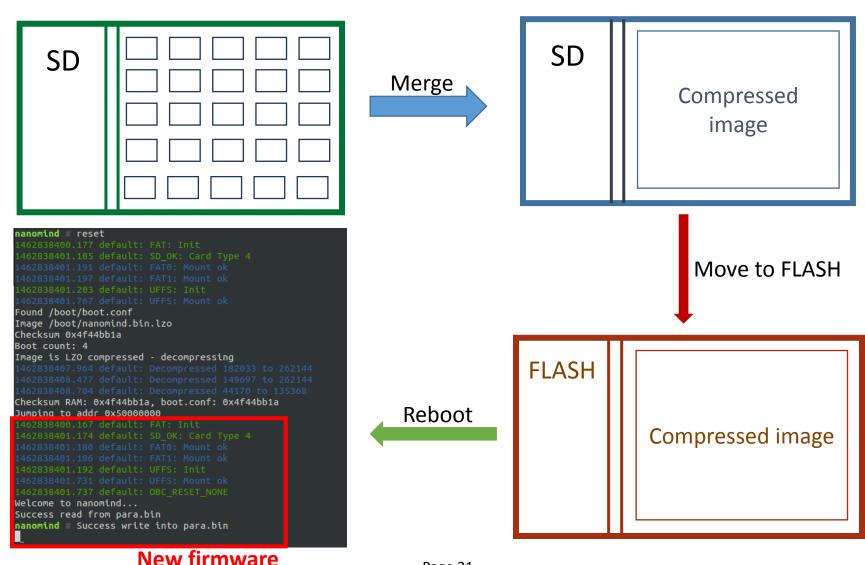


Resilient Software Design - Self Configurable Architecture -

- The behavior of the FSW is influenced by some system parameters.
- Tune/adjust system parameters depending on the situation.



Resilient Software Design - In Orbit Software Update -

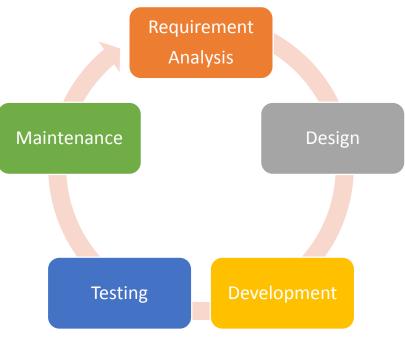

- Some unpredictable situation occur in space, it may cause the fatal error in FSW.
- In case that some major issues happened in flight software, a backup solution is proposed by uploading new firmware on OBC.
- All the step must be done by telecommand from GS.

Resilient Software Design - In Orbit Software Update -

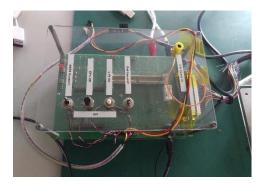
Page 21

Resilient Software Design - In Orbit Software Update -

- Results:
 - each part will be uploaded within 180 seconds
 - More than 20 contacts are needed.
 - Successfully update the flight software all by GS


- Introduction
- PHOENIX Nanosatellite
- Flight Software Design
- Resilient Software Design
- Testing and Verification
- Conclusion

- Several tools are used to conduct the testing campaign and verification process.
 - Discover errors or defects in FSW.
 - Verify that if the design meets the requirements.
 - Evaluate the performance of FSW.



Testing and Verification - Test Configuration Setup -

- Software Debug Interface
 - Self defined command
 - GOSH interface
- Tools
 - EGSE ISIS Generic Interface System
 - I²C protocol analyzer
 - STM32F429 Discovery Board

nalCheck	PHOENIX: finalcheck
stest	PHQENIX: gpstest
	PHOENIX: ch [ON(1), OFF(0)]
	PHOENIX: pc [sub] [ON(1), OFF(0)]
ss	PHOENIX: epss []
	PHOENIX: first flight switch
FD	PHOENIX: mSED
	PHOENIX: LC
n	PHOENIX: isn [buffer]
s	PHOENIX: mcs [ON = 1 / OFF = 0]
msR	PHOENIX: inms
ms	PHOENIX: \nms <cmd1> <cmd2> <cmd4></cmd4></cmd2></cmd1>
c	PHOENIX: 1ZC <node> <rx> will have <para> *N byte ?</para></rx></node>
mss	PHOENIX: inmss [ON = 1 / OFF = 0]
	PHOENIX: cm
CSS	PHOENIX: adcss [ON = 1 / OFF = 0]
uvs	PHOENIX: seuvs $[ON = 1 / OFF = 0]$
le	PHOENIX: tele $[ON = 1 / OFF = 0]$
	PHOENIX: jt [sec]
	PHOENIX: Inms script read
	PHOENIX: simulate receiving a uplink command and execute it
test	PHOENIX: Activate/OFF Thermal Task,switch 1=on, 0 =off
utdown_tm	PHOENIX: change transceiver standby mode
rawrite	PHOENIX: write para setting in FS
raread	PHOENIX: read on board parameter setting in FS
radelete	PHOENIX: delete parameters.bin
data_del	PHOENIX: delete t_obc.bin t_inms.bin
mp_mode	PHOENIX: jump_mode [mode] // 0=safe mode, 2=adcs mode,3=payload mode
leunlock	PHOENIX: skip idle 30m step
stmode	PHOENIX: enter testmode, please reboot satellite if want to leave this mode
uvwrite	PHOENIX: configure SEUV
uvread	PHOENIX: Take data from a configured Channel
mhk	PHOENIX: retrive com hk data
mhk2	PHOENIX: retrive com transmitter state

Testing and Verification - Test Campaign -

- Reference Functional Test
 - Basic Functional Test
- Environmental Test
 - Data Recording
- End to End Communication Test
 - Uplink large file, downlink large file
- 32 Hour Test
 - Continues operation, simulate contacting, mode transition
- Anomaly Handling
 - Handle anomaly during the mission
- Mission Verification
 - Focus on operation of each mode
- Telecommand Test
 - All telecommands (169/169) have been implemented and tested.

- Introduction
- PHOENIX Nanosatellite
- Flight Software Design
- Resilient Software Design
- Testing and Verification
- Conclusion

- Flight Software
 - A comprehensive software architecture is designed and implemented.
 - A few methods for increasing the reliability of FSW are proposed.
- Testing and Verification
 - Several testing campaigns are conducted and passed successfully.
 - Some anomaly are detected, and update the related action in FSW.

