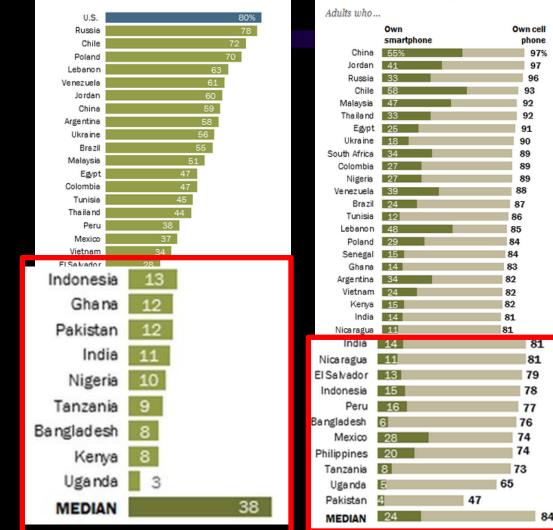
Low cost communication network for Equatorial remote areas

Pre-4th Mission Idea Contest, 3rd UNISEC Global Meeting 4 July 2015, Takeda Hall, Asano Campus University of Tokyo, Japan

> Presented by BENDOUKHA, SIDI AHMED DURAN, ADELAIDA CASTILLO


Outline of the Presentation:

- **1.** Introduction
- 2. Mission Objectives
- **3.** Concept of Operations
- 4. Orbit and Constellation Design
- 5. Mission key performance parameters
- 6. Space segment design
- 7. Implementation plan
- 8. Conclusion

(1. Introduction) **Global Situation -- Access to Communication?**

Global Computer Ownership

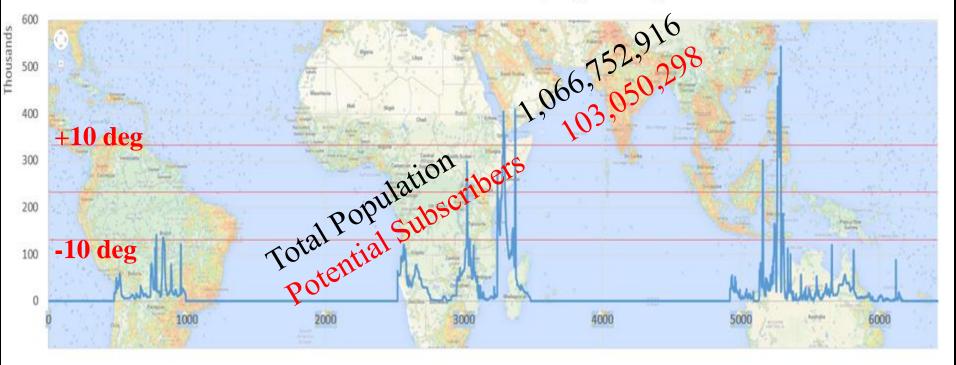
Adults who have a working computer in their household

Cell Phones Commonplace: Smartphone Ownership Varies

who.				
	Own		Own cell	Phi
	smartphone		phone	Ve
China			97%	In
ordan			97	Sout
lussia	33	_	96	
Chile			93	T
laysia	47		92	A
Fand			92	
Egypt			91 90	N
Africa			89	
ombia			89	
igeria	27		89	L
zuela			88	10
Brazil	24		87	
unisia	12		86	
anon	48		85	
oland	29		84	
negal	15		84	1
Ghana	14		83	
entina			82	
etnam			82	
Kenya			82	
India	14		81	
ragua	11		81	Nice
diâ	14		81	Bangl
gua	11		81	
dor	13		79	Col
sia	15		78	U
eru	16		77	EI Sa
esh	6		76	T
άœ	28		74	
nes	20		74	
nia	8		73	Th
nda	5		65	1.20
tan	4	47		Pa
AN	24		84	M

Text Messaging More Frequent than Pictures, Video

Cell phone owners who have used their cell phone in the past 12 months to ...

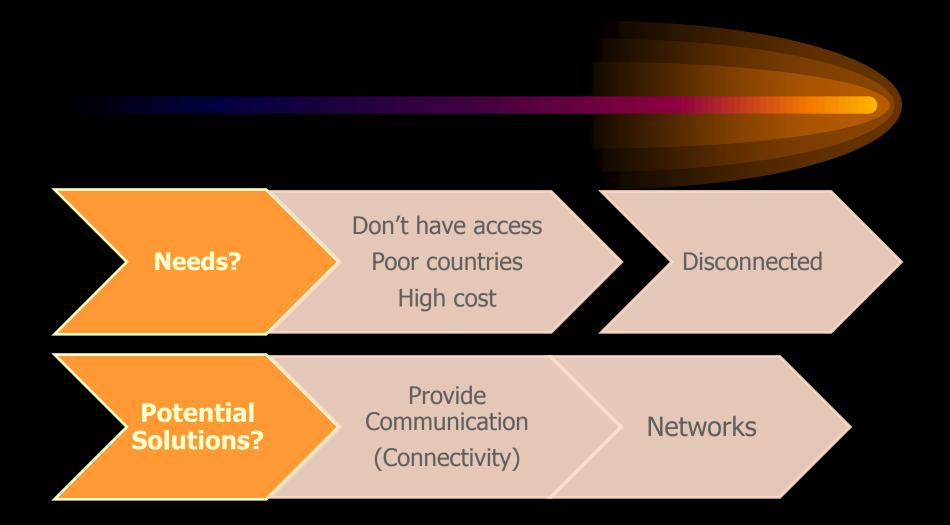

	Send text messages	1	Take pictures or video
Philippines	98%	Venezuela	75%
Venezuela	97	Chile	72
Indonesia	96	Mexico	68
South Africa	95	Philippines	67
Tanzania	92	Argentina	66
Argentina	90	Egypt	66
Mexico	89	Russia	66
Malaysia	89	China	65
Kenya	88	Bangladesh	65
Russia	83	Poland	64
Lebanon	82	Brazil	64
Nigeria	80	Nicaragua	63
China	78	South Africa	60
Chile	78	Colombia	58
Poland	78	Nigeria	57
Vietnam	76	Malaysia	55
Egypt	75	Jordan	54
Brazil	73	Thailand	54
Peru	73	Kenya	54
Senegal	70	Tanzania	53
Nicaragua	67	Gr	ana 48
Bangladesh	67	ElSalv	
Colombia	62		aine 45
Uganda	60		nam 45
ElSalvador	59	Indon	
Tunisia	57	Tur	nisia 41
Ghana	51	1	ndia 38
India	50	Uga	nda 37
Thailand	39	Leba	anon 34
Pakistan	37	Paki	stan 28
MEDIAN	76	MED	IAN 55

http://www.pewglobal.org/2015/03/19/1-communications-technology-in-emerging-and-developing-nations/


(1. Introduction)

Population without Access to Communication ?

Population without Access to Communication by Longitude (Line Graph) Areas with Access to Communication (Background Map)



- 1. South America
- 2. Central and Southern Africa
- 3. Southeast Asia (Malaysia-Indonesia Peninsula, Southern Philippines)
- 4. Pacific Islands (Indonesia-Papua New Guinea Regions)

Target areas represented by red boxes (not to scale). Considered only areas without access to Communications

(1. Introduction)

(1. Introduction)

How to solve the connectivity problem in Equatorial Region remotes areas?

Wired and mobile communications
-- fast, easy but limited coverage

Communication via satellite
-- good quality but high cost

(2. Mission Objective)

Question that needs to be addressed -- Mission Idea?

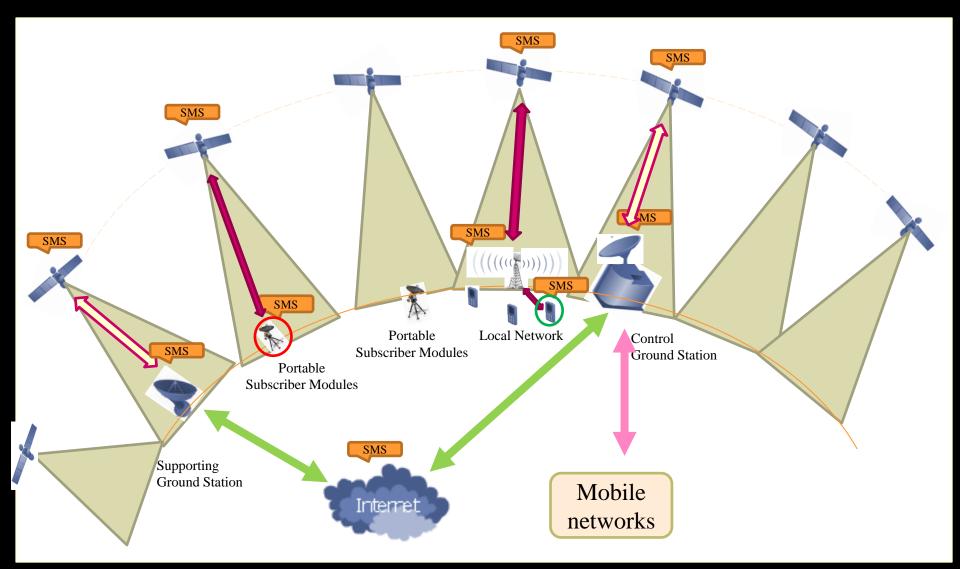
How to provide a SMS/MMS communication at a relatively <u>low cost for developing countries</u> along the <u>Equatorial Region?</u>

Low cost communication network for Equatorial remote areas

Dmytro Faizullin, Adelaida C. Duran, Rahmi Rahmatillah, Rafael Rodriguez, Sidi Ahmed Bendoukha, Okada Yumiko, and Fumito Kuroiwa

faizullindr@gmail.com, o595301d@mail.kyutech.jp, o350941r@mail.kyutech.jp, rafael@es.ise.kyutech.ac.jp, ben.sid@hotmail.fr, o350908y@mail.kyutech.jp, o350912f@mail.kyutech.jp

(2. Mission Objective)


Mission Objectives

 Demonstrate the capability of <u>satellite</u> <u>constellation</u> in <u>equatorial region</u> for providing stand-alone communication.

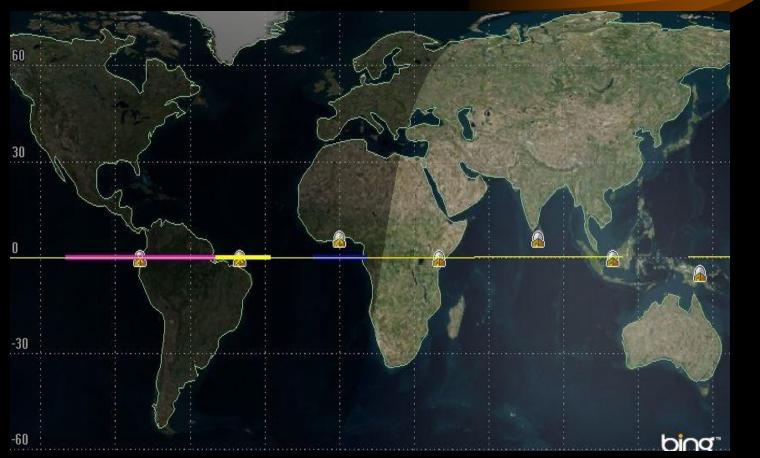
Provide SMS and MMS services at low cost

(3. Mission Concept)

Mission Concept

Orbit and Constellation Design

1. Earth Coverage in terms of Latitudes


- ✓ Field of view of payload (FOV) \pm 50 deg
- \checkmark Latitudes for coverage area bigger than 10 deg

2. Time delay

Time delay less than 1 hour was chosen for current project, computed base on the following

- ✓ Altitude of satellite (1000 km)
- ✓ Number of satellites (04)
- ✓ Number of ground stations (07) from -80 to +150 deg

Location ground segment: 07 ground stations located in Equatorial planeusing STK software for plot

Dependence of altitude from FOV of payload and covered area in terms of latitude

Altitude(h),km ECV((a), deg	500	600	700	800	900	1000	1100	1200	1300	1400	1500
30	2.6	3.2	3.7	4.2	4.8	5.3	5.9	6.4	7.0	7.6	8.1
35	3.2	3.9	4.5	5.2	5.9	6.6	7.3	8.0	8.7	9.4	10.1
40	3.9	4.7	5.5	6.3	7.2	8.0	8.9	9.8	10.7	11.6	12.6
45	4.7	5.7	6.7	7.7	8.8	9.9	11.0	12.2	13.3	14.6	15.9
50	5.7	6.9	8.2	9.6	10.9	12.4	13.9	15.5	17.2	19.1	21.1
55	7.1	8.7	10.4	12.2	14.2	16.4	18.8	21.7	25.1	26.1	27.1
60	9.1	11.4	14.0	17.1	20.3	21.6	22.9	24.0	25.1	26.1	27.1
65	12.8	15.8	17.5	18.9	20.3	21.6	22.9	24.0	25.1	26.1	27.1
70	14.0	15.8	17.5	18.9	20.3	21.6	22.9	24.0	25.1	26.1	27.1

Revisit time of a ground station by satellites

Altitude	e, km	500	600	700	800	900	1000	1100	1200	1300	1400	1500
FOV, o	deg	65	60	55	55	50	50	45	45	40	40	35
Number of	1	101,3	103,6	106,0	108,5	110,9	113,4	115,9	118,4	121,0	123,5	126,1
satellites	2	50,6	51,8	53,0	54,2	55,5	56,7	57,9	59,2	60,5	61,8	63,1
	00	33,8	34,5	35,3	36,2	37,0	37,8	38,6	39,5	40,3	41,2	42,0
	4	25,3	25,9	28,5	27,1	27,7	28,3	29,0	29,6	30,2	30,9	31,5
	5	20,3	20,7	21,2	21,7	22,2	22,7	23,2	23,7	24,2	24,7	25,2
	6	16,9	17,3	17,7	18,1	18,5	18,9	19,3	19,7	20,2	20,6	21,0
	7	14,5	14,8	15,1	15,5	15,8	16,2	16,6	16,9	17,3	17,6	18,0
	8	12,7	13,0	13,3	13,6	13,9	14,2	14,5	14,8	15,1	15,4	15,8
	9	11,3	11,5	11,8	12,1	12,3	12,6	12,9	13,2	13,4	13,7	14,0
	10	10,1	10,4	10,6	10,8	11,1	11,3	11,6	11,8	12,1	12,4	12,6

Time delay for transmitting message

Number of gr stations	round	1	2	3	4	5	6	7	8
Considered territory by longitudes, deg		360	360	-80 till +140	-70 till +150	-80 till +160	-80 till +120	-80 till +150	-80 till +140
Distance betw ground station		360	180	110	80	60	40	40	35
Time betweer ground station		113,4	56,7	34,6	25,2	18,9	12,6	12,6	11,0
Number of	1	226,8							
satellites	2		163,3	153,9	125,6	106,7	87,8	87,8	83,0
	3		163,3	135,0	106,7	87,8	68,9	68,9	64,1
	4		135,0	97,2	97,2	78,3	59,4	59,4	54,7
	5		140,7	97,2	68,9	72,6	53,7	53,7	49,0

Cost Analysis

- 1. Cost of one satellite: 2M\$
- 2. Cost of one ground station (GS): 350,000 \$

Cost in Million Dollars		Number of Ground Stations									
		1	2	3	4	5	6	7	8		
Number of	1	2.35	2.7	3.05	3.4	3.75	4.1	4.45	4.8		
Satellites	2	4.35	4.7	5.05	5.4	5.75	6.1	6.45	<mark>6.8</mark>		
	3	6.35	6.7	7.05	7.4	7.75	8.1	8.45	<mark>8.8</mark>		
	4	8.35	8.7	9.05	9.4	9.75	10.1	10.45	10.8		
	5	10.35	10.7	11.05	11.4	11.75	12.1	12.45	12.8		

Efficiency coefficient of satellite communication system.

Efficiency = 1000/ (Cost * Time delay)

Efficiency		Number of Ground Stations									
		1	2	3	4	5	6	7	8		
Number of Satellites	1	1.88	1.63	1.45	1.30	1.18	1.08	0.99	0.92		
	2	1.01	1.30	1.29	1.47	1.63	1.87	1.77	1.77		
	3	0.69	0.91	1.05	1.27	1.47	1.79	1.72	1.77		
	4	0.53	0.85	1.14	1.09	1.31	1.67	1.61	1.69		
	5	0.43	0.66	0.93	1.27	1.17	1.54	1.49	1.59		

(5. Key Performance Parameters)

Mission Key Performance Parameters

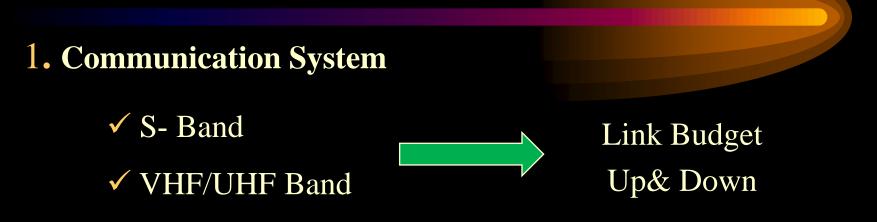
- 1. Covered Area and message delivering time delay
 - ✓ Delivering time delay is maximum 60 minutes
 - ✓ Minimum Covered territory latitude is $\pm 10^{\circ}$
 - \checkmark Revisit time of a ground station by satellites is 28.3 min
- 2. Data & Capacity
 - ✓ Data rate about 200 Kbps
 - ✓ SMS size is selected to be maximum 1kB
 - \checkmark Capacity of one satellite is 25 messages per second ₁₉

Listed key performance parameters using for the ground segment

3. Ground segment performance

Parameters	Value
Number of ground station	07
Location	80° west and 150° east longitudes
Distance between neighbor ground stations	40 degree along equator
Time passing between two GS	12.6 minutes
Time passing stations	37.4 minutes
GS Antenna Type	Parabolic dish
Antenna efficiency	65%
Antenna gain	30dBi, -3dB beamwidth 2.9deg
Receiver sensitivity, BER	-138dB, 10 ⁻⁷

(5. Key Performance Parameters)


User segment equipment has featuring continuous wave (CW) reception functions

4. User Segment

Parameters	Value
Power transmitted	02 watts
Internal antenna gain	16dBi
Bit rate of internal antenna	384kbps
Transmission rate Up to 1.5 Mbps	Connect to external antenna from terminal

(6. Space Segment Design)

To achieve all the operation it's important to have a suitable communication system

2. C&DH

For this mission we need to consider a very reliable and redundant data storage system

- ✓ 200kbps data baud rate, provide 25 messages in 1 second, 2160000 messages in 1 day
- ✓ Equivalent to 2.16 GB transmitted data per day.

(6. Space Segment Design)

Space Segment Design

3. Attitude and Orbit Control System

- 3 axis stabilized.
- Attitude control accuracy has accuracy error for roll and pitch 0.0±0.5deg/3.0deg, for yaw 0.0±0.1deg/3.0deg
- ✓ AOCS consist of three parts:
 - Sensors (3 Gyros, 1 GPS, 6 Sun-sensor, 1 Magnetometer)
 - Microcontroller (Collects data from sensors)
 - Actuators (4 Reaction wheels)

(6. Space Segment Design)

Space Segment Design

4. Power System

The power system shall be reliable and shall include redundancy for ensure the correct mission

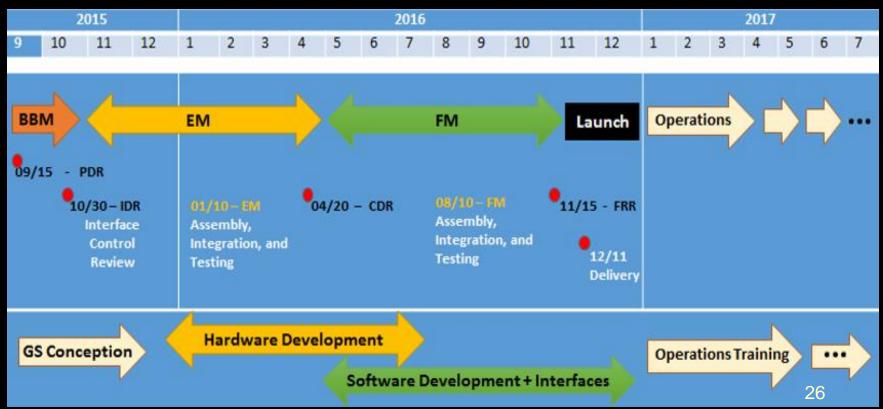
- Satellite Consumption Power (100 Watts)
- Margin, 20% of power (20 Watts)

5. Mass Budget

The satellite mass requirements obtained by the mass budget estimation used as reference of design,

• Total mass (**40 kg**)

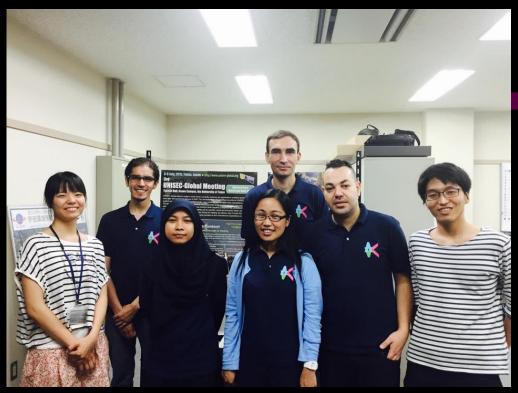
(7. Implementation Plan)


Implementation Plan

- Implementation of the project depends on multiple factors and consists of several steps
 - ✓ Technical part of project
 - Investigation of technical feasibility
 - Development
 - Production
 - ✓ Law regulation
 - Permission to build the ground stations
 - Frequency allocation
 - Service providers
 - Local government
 - Local network providers

(7. Implementation Plan)

High level schedule for the proposed mission


• Plan presented in different steps classified in order including a feasibility study definition

(8. Conclusion)

Conclusion & Perspectives

- Opportunities for space science and satellites technology for developing countries(rural areas)
- Solving regional problems by international efforts
- The main purpose is having a minimum cost for communication that supports Equatorial region population
- The developed idea can be a performed by lean satellites because of the low cost and good enough technical capability

Thank you for your attention

