

Tokyo, July 3rd - 5th 2015

TABLE of CONTENT

AIR POLLUTION

HORUS constellation

S¹.

CLIMATE CHANGE

ι. 5 5 constellation

HOW CAN THEY BE MONITORED?

EXISTING SOLUTIONS

TERRA SATELLITE

ASTER

(Advanced Spaceborne Thermal Emission and Reflection Radiometer)

CERES

(Clouds and the Earth's Radiant Energy System)

MISR

(Multi-angle Imaging SpectroRadiometer)

MODIS

(Moderate-resolution Imaging Spectroradiometer)

MOPITT

(Measurements of Pollution in the Troposphere)

NASA launched the Earth Observing System's flagship satellite "Terra," named for Earth, on December 18, 1999

EO CUBESAT CONSTELLATION

FLOCK of DOVES PLANET LABS

Low cost mission

Nadir–pointing cameras

High resolution imagery

SkySat constellation Skybox imaging + Google

HORUS constellation

From MISR to CAST

Single satellite with MISR sensor

- measurements only along a restrictive plane with respect to the solar phase → insufficient for accurate analyses
- angular measurements separated in time by too many minutes alongtrack → low data reliability

<u>Small satellites in</u> <u>formation flight</u>

- large angular spreads → faster and better data
- improvements in time of sampling → higher data reliability
- Possibility to use COTS and standardise items and technologies → cheaper mission

HORUS

IMPROVEMENTS

HORUS CAST

A constellation of four 3U CubeSats

UNIQUENESS

Synthetic mini - MISR

The more "Cast of FALCONS"...the more robust and reliable DATA!

SYNERGY

16

Mini - MISR View Angles

Maximal sensitivity to off-nadir effects

70.5 dea

HORU

Mini - MISR Capabilities

Mini-MISR will be able to acquire radiometrically and geometrically calibrated images in <u>four spectral bands</u> at each angle:

Estimation of the size distribution of the aerosol particulates (blue channel – 443 nm)

Broadband-reflecting properties for albedo features estimation (green band – 555 nm)

<u>Vegetated surface identification and marine aerosol studies</u> (bands in the red and near-infrared – 670 and 865 nm)

Mini - MISR CAMERAS

Cameras	Df	Cf	Bf	Af	An	Aa	Ва	Са	Da	
Angles	70,5	60,5	45,6	26,1	0,0	26,1	45,6	60,0	70,5	
443 nm										
555 nm										
670 nm										Clo
865 nm										

Albedo

Cloud detection/Features

Surface classification

Aerosols

Comparison

SYSTEM REQUIREMENTS

Multiple sampling of targeted area	the acquisition of a huge imagery allows improvements in data reliability		
Sunlight and Cloud Coverage	an optical sensor have limitations in term of diurnal sampling - some of them need daylight - and requirements in terms of cloud fraction statistics		
Attitude and Orbit Control System	the central sensor camera has to maintain a nadir- pointing configuration and the high-gain antenna has to be accurately pointed to Earth for communications		
Calibration	mini-MISR needs a stable and absolute calibration in order to ensure a synergism between the various sensors operating at the same time		

AB

ORBIT FEATURES

Orbit	SSO - circular
Semiaxis	6856.99 km
Inclination	97.41 deg
Argument of Perigee	68.13 deg
RAAN	200.00 deg
Shift in True Anomaly	2.32 deg
Mean Local Solar Time at DN	10:30 am
Orbital Period	94.18 min
Eclipse Time	35.12 min

S⁵_{AB}

MISSION SEGMENTS

Size	300x100x100 mm
Weight	~ 3,8 Kg
Area-to-mass	0.00789
Orbit	SSO (500 Km) – LTAN 10.30 am

COMMUNICATION

- **High speed downlink**: <u>X-BAND</u> (Simple quasi-omnidirectional antenna diagram)
- High speed uplink: <u>S-BAND</u>

- **Backup downlink**: <u>S-BAND</u> (minimizing of data losses)
- Backup uplink TT&C: UHF

LAUNCH SEGMENT

HORUS CubeSats could be **launched as part of a larger payload** of a nominal launcher, by an aircraft launcher or by expulsion from an orbitant platform (i.e. ISS)

LINK BUDGET

FEATURE	S-Band	X-Band	
Frequency	2.2 GHz	8.4 GHz	
Transmitter Power / Total RF Power to Antenna	4 W / 4.33 dBW	8.8 W / 7.8 dBW	
Antenna Gain TX / RX	10 dB / 45.7 dB	2.15 dB / 57.5 dB	
Modulation Type	BPSK	QPSK	
Telemetry Eb/No	12.2 dB	10 dB	
Requested Telemetry Eb/No	10.7 dB	9.6 dB	
System Margin	1.5 dB	0.4 dB	
Data Rate	1 Mbit/s	1.1 Mbit/s	
		НC	RUS
24		c o n ร	tellation

S⁵_{AB}

CUBESAT SUBSYSTEM OVERVIEW

OCS	Orbit Control System		
CDHS	Command & Data-handling System		
EPS	Electric Power System		
ADCS	 Attitude, Determination and Control System 		
TT&CS	 Telemetry, Tracking & Command System 		
DRAG SAIL FOR CUBESAT DEORBITING			

MISSION LIFETIME

• The cubesat will experience a significant decay due to the drag during the period of mission. We performed an **orbit evolution analysis** and the **mission lifetime** is about **7.25 years** with an average **daily decay of 18 meters**

For the «Attitude and Determination Control System» we collaborate with HYPERION TECHNOLOGIES (iADCS100)

SPECIFICATIONS							
Performance							
Total momentum storage per axis		+/-1.5 to +/- 6.0 ¹		mNms			
Maximum torque		>0.087		mNm			
Nominal magnetic moment		0.2 (2	X, Y), 0.1 (Z)	Am ²			
Attitude determination accuracy		30		arcseconds			
Pointing accuracy		<< 1		0			
Slew rate	> 1.5 ²		°/s				
Electrical specifications							
	Min.	Тур.	Max.				
Supply voltage	4.0	5.0 ³	15 ⁴	V			
Bus logic level voltage R		eferenced to	o Vsys⁵	V			
Power consumption:							
Idle	<tbd></tbd>	<tbd></tbd>	900 ⁶	mW			
Nominal ⁷	<tbd></tbd>	1400	<tbd></tbd>	mW			
Peak ⁸	<tbd></tbd>	2700	4500 ⁶	mW			

Outer dimensions	95 x 90 x 32 mm
Low mass	250 g
Low power	2.7 W peak

SOLAR PANELS SIZING

Area available (<u>well-lighted</u>)	0.132 m ²	Cells in	Cells in	
Tot Power available	48.957 W	series:	parallel:	
Voltage available	2.100 V			
Bus Voltage	8 V	4	121	
Cell Area	1.55 x 3.18 cm			
Solar panels filling factor	0.9			
Area available (<u>non well-lighted</u>)	0.07 m ²	Cells in	Cells in	
Tot Power available	25.84 W	series:	parallel:	
Voltage available	2.100 V			
Bus Voltage	8 V	4	64	
Cell Area	1.55 x 3.18 cm			
Solar panels filling factor	0.9			

DRAG SAIL

- Each cubesat will have on-board a drag sail for deorbiting developed by NPC Spacemind (Bologna – Italy) ready to be tested on URSA MAIOR QB50 cubesat
- The sail is made of a special polymeric material that works like a memory shape or elastic material

29

CUBESAT STRUCTURE

Structural and mass optimization

Integration compatibility

Smart development

MONOLITHIC ALUMINIUM STRUCTURE

PRELIMINARY **RISK ANALYSIS**

	RISK	PROBABILITY	PREVENTION
	Structure failure	Very low	Vibration and structural tests before the design phase
	Sensor calibration failure	Very low	Mini-MISR calibration using state-of-the-art techniques
	AOCS failure	Low	HORUS' AOCS has already flown in a CubeSat mission
	MISR data collection failure	Low	Synchronization between mini-MISR sensors in data acquisitions over a targeted area
	Downlink data loss	Medium	Each CubeSat will be provided with an on-board memory –ranging between 32kB and 8MB – and an additional flash memory up to 8GB
C			HORUS

FUTURE IMPROVEMENTS

Enhancement for the optical sensors:

- Spectral range from 1 µm to 1.6 or 2.1 µm (enhancements for the study of both aerosols and clouds)
- Finer spatial resolution (a factor of two refinement)

Collaboration with Resource Providers:

- to design an imager with multi-spectral and multi-angle capabilities
- to gain the cubesat subsystems needed
- Synergy with other EO operational mission in order to improve the amount and the quality of data
 - Collaboration with research and data design facilities

OUTREACH PROGRAMME

<u>WEB</u>

• FACEBOOK

- TWITTER
- YOUTUBE channel
- LA SAPIENZA UNIVERSITY
 OFFICIAL WEBSITE
- OFFICAL WEBSITE/BLOG
 - EDU App

Scientific papers for journals about area of space research

CONFERENCE

- IAC 2016
- AIAA 2016
- AIDAA 2016
- AMOS 2016

LA SAPIENZA University of Rome

- LECTURES during academic courses of Aerospace Engineering (BSC) and Space and Astronautical Engineering (MSC)
 - S5Lab Laboratory OPEN DAYS

FUND RAISING

Partnership with local companies

Sponsorship by firms interested in gaining social responsability benefits

ACADEMIC SUPPORT

HORUS constellation

ADVISORS

QUESTIONS??

