

University of Monastir Faculty of Sciences of Monastir Microelectronics & Instrumentation Lab

Microélectronique et instrumentation

Development of 3D Synthetic Vision with network of pico-satellites

Nissen Lazreg

Friday, December 12, 2014

SATELLITE CONTEXT

- Now observing the Earth from space is performed by means of a series of satellites.
- A Pico-satellite constellation plays an important role in missions of vision and surveillance of ground.

- Spacecrafts may be threatened by the effects of external disturbances.
- * Each satellite networks requires solutions to avoid threats (disturbance).

μEi

- I. Objective
- **II. Satellites Network**
- **III. Choice of Architecture**
- **IV. Application**

V. Conclusion and Outlook

OBJECTIVE

Perform an architecture of constellation of Pico-Satellite that meets

the coverage of Tunisia:

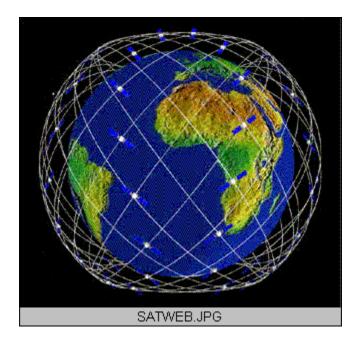
> desert region exploitation and monitoring .

> fire detection, earthquake forecasts and predictions of volcanic activity...

μEi

> Propose optimal solutions that take into account the constraints of the

architecture and minimize the number of satellites covering


SATELLITE NETWORKS

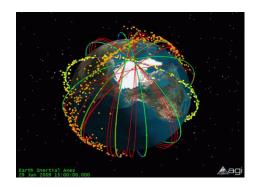
uEi

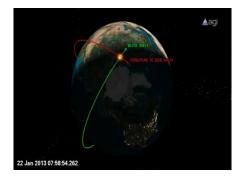
□ Advantages of formation flying

Several identical satellites in cooperative orbits

- Make possible new observing capabilities
- On-orbit reconfiguration within the formations offers multi-mission capability
- Reducing the size and complexity of the satellites in the formation.
- Take advantage of economies of scale
- Can reduce launch costs

Background Issues

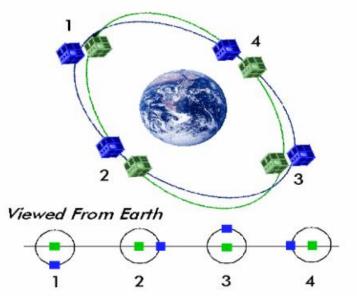

> Two phases of mission of Nanosatellites:

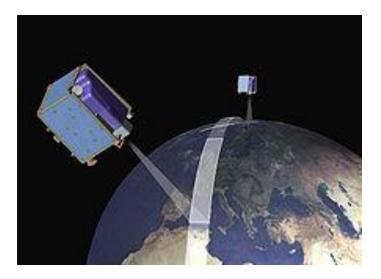

- placement on operational orbit.
- ✤ counter orbital perturbations.

□ Specific problems in training:

Collision of satellitesrelative motion modeling

Over hundreds of thousands of pieces of this collision build a cloud in LEO





CHOICE OF ARCHITECTURE

- > Architecture avoid any collision.
- > Relative motion of each satellite
- > Determined and fixed distance between each satellite.
 - > Low dimension of training \longrightarrow Differential acceleration = 0
 - > Relative Velocity between satellites = 0
 - > Stable geometry.

✓ Undisturbed environment with high accuracy

- > hierarchy of authority.
- > geometry of the formation does not change along the reference orbit.

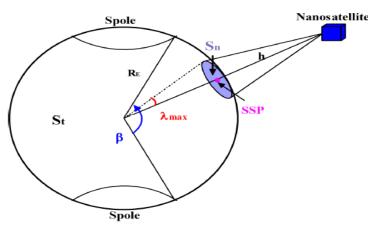
μEi

> suitable for applications in meteorology and environmental.

✤ A satellite training must have:

> As cloakroom, on the other satellite state.

 \succ A control law that depends on the other member.

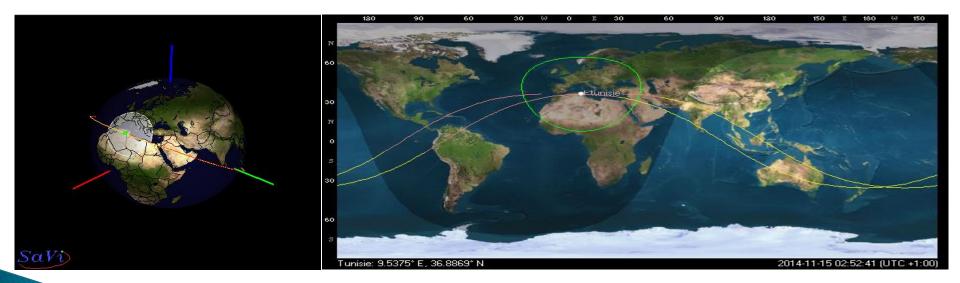

- Their positions are determined by the distance measuring devices DMD and GPS.
 - DMD determine their relative distances to each other
 - ➢ GPS determines their position relative to the Earth and checks the distance measured between the satellites.

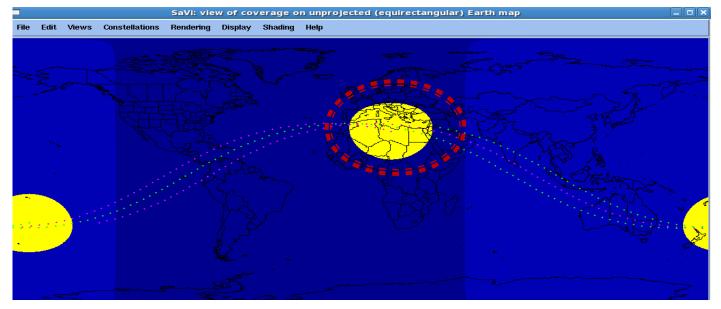
APPLICATION

μEi

Constellation Modules

Design vector variable	Σ	Range
Constellation altitude	σ1	300 Km
Downlink data rate	σ2	140 Kbps
elevation angle	σ3	$5^{\circ} \leq \epsilon \geq 10^{\circ}$


Constant vector variable	Γ	Value
Latitude	y1	34°
Inclination angle	y 2	36°
β angle	y 3	56°


Nano-Satellite for Tunisa Coverage Design Vector

Nano-Satellite for Tunisa Coverage Constant Vector

O orbital parameters

NE WAY AN	🗶 🗖 SaVi: I	dit satellite parameters (pr	ess return to	save) _ 🗆 🗙
man and a second	Sate	llite name		
M Z L Part				
		Orbital elements	_	
hand and the second	semi-major axis (km)	6700.00	90.964	period (minutes)
And in a start of	eccentricity e	0.0320	-6.7989	nodal precession (deg/day)
. /	inclination (deg)	36.000	9.5491	apsidal rotation (deg/day)
	long. asc. node (deg)	266.400	536.26	apoapsis altitude (km)
	arg. of periapsis (deg)	100.800	107.46	periapsis altitude (km)
	time to periapsis (s)	0.000		
	Show satellite and	groundtrack 📕 Show coverage are	a 📕 Show orbit	
	-4			Dismiss window

Nano-Satellite for Tunisa Coverage

ode de recherche: 2014-11-14 21:58:34 2014-11-15 21:58:34 Lieu: Tunisie (9.5375* E, 36.88	Fuseau horaire UTC +1:00 Passages totaux: 2 69° N)	
Satellite poursuivi 1/1: DELTA 2 R/B(1)	Passages: 2	
Avance totale:	Terminé ! Terminé !	

Number of Nano- satellites	2 Sats
Earth central angle (λ_{max})	14,94°
Maximum time in view (T _{max})	7,51 min
Orbital Period	9h
Number of orbit per day	2

Outputs of Nano-Satellite for Tunisa Coverage

CONCLUSION AND OUTLOOK

Conclusion

- Review of some problems in LEO satellite networks.
- > Find an architecture of satellites network that can interact with the most problems.

Outlook

➢ Discuss the best architecture of Leader-Follower for the best coverage of the earth (one or two Orbits).

Sizing coverage area

Thank You!

lazreg.nissen @ yahoo.fr