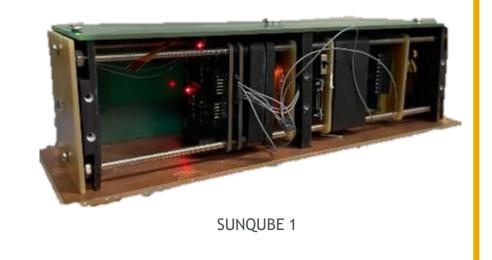


A View from the Southern Hemisphere: Space Research at Stellenbosch University

ADCS for a PocketQube Satellite - SUNQube 1 (Jandré)



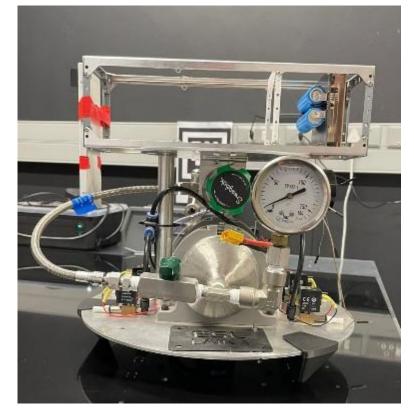
Simulation, hardware, and software development

Hardware: Momentum Wheel, Magnetorquers, OBC, Sensors

Validation and testing of full ADCS system

Designed for a **3P PocketQube** platform

Close Proximity Control Docking of CubeSats to Moving Target - DockSat Mission (Russouw)



Improved docking adapter for flight-ready prototype

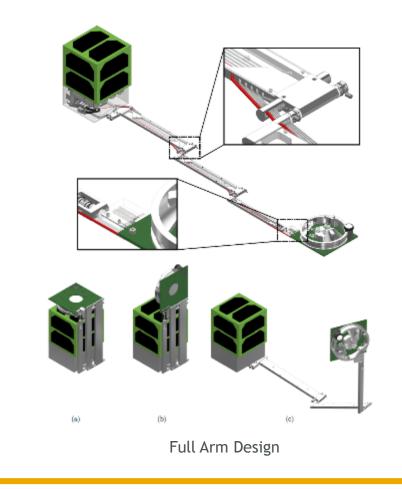
Thruster-based control system development and testing

Tested on air bearing table with mobile trolleys

Enables CubeSat docking/undocking with a moving target

Trolley Test

Robotic Arm - DockSat Mission (Dane)



CubeSat: Nanosatellite made of 10 cm x 10 cm x 10 cm Units (U)

On-Orbit Activities: On-Orbit Servicing, Repairs and Assembly.

Manipulator: Series of links rigidly connected by joints. Series of joints articulate together to enable an end-effector to move and interact with objects in space.

DockSat: a mission within the university to develop and miniaturise the technology required to enable docking between nanosatellites.

FPGA-based Star Tracker Camera for a PocketQube Satellite (Nortier)

Image capture and processing on FPGA hardware

Star detection and centroiding algorithm development

Star pattern identification for attitude estimation

Calibration and validation through ground testing

Star Tracker Camera Example - Sodern Auriga

Design of a Radiation Hardened CubeSat OBC (Michael)

RISC-V based CubeSat

OBC design

Focus on radiation tolerance

Single Event Effect testing

Apply hardening techniques

Propose architecture improvements

Wireless CubeSat System for Agricultural Monitoring (Mayameko)

Combines IoT ground sensors with CubeSat imaging

Provides data on crop health, soil, and environment

Uses **Meshtastic mesh network** for ground communication

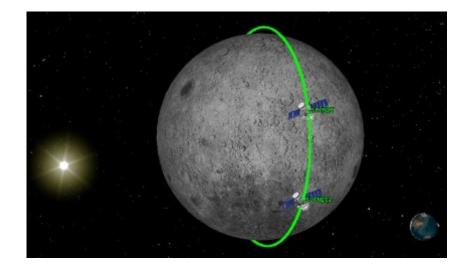
Gateways connect to satellite via modified TDMA

Aims to improve farming efficiency and resilience in Africa

Propose architecture improvements

SUNQUBE-0B

ADCS for a Moon-Orbiting Satellite (Petrus)


Develop **control algorithms** for lunar orbit ADCS

State estimation and system-level development

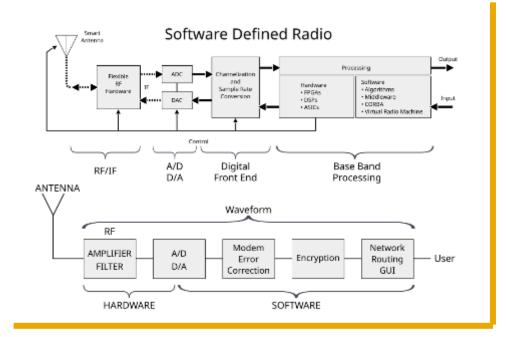
Embedded implementation with testing and simulation

Hardware-in-the-loop (HIL) validation

Includes lunar orbit propagation and position estimation

Ansys STK Lunar Orbit Simulation

Software defined Radio (SDR) on an FPGA (Sazi)



FPGA-based SDR transceiver for satellite communication

Automatically **switches modulation and encoding** based on BER

Ensures robust links over varying signal conditions

Research involves hardware implementation, real-time signal processing, and adaptive algorithms

Flight Control System for a Suborbital Sounding Rocket (Jonno)

Develops **guidance and control** for suborbital rocket trajectories

Simulation environment models rocket dynamics and atmosphere

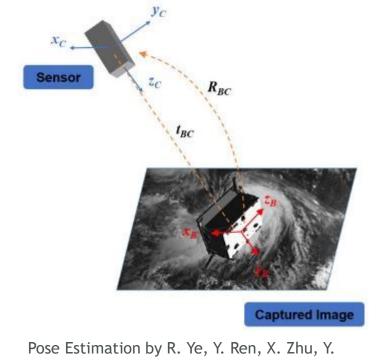
Designs and tests robust controllers and state observers

Implements flight computer for real-time control laws

Validated through Hardware-In-The-Loop (HIL) simulation

Example - ASRI Phoenix-1D rocket by UKZN

Full State Pose Estimation using a Satellite Imager (Neil)



Uses **Earth observation camera** for position and attitude estimation

Visual navigation matches Earth features to known maps

Enables absolute pose determination from onboard imagery

Forms the basis of an **Earth Tracker sensor** for satellites

Wang, M. Liu, and L. Wang

