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The Problem: IEDs and 
Civilian Vulnerability

• IED fragments = threat in modern asymmetric conflict 

• Civilians & aid workers → unarmoured vehicles 

• Existing armour = too heavy / too costly 

• Humanitarian protection gap

IED 
examples

Aftermath of an 
IED explosion 

Bushmaster 
Protected 
Mobility 
Vehicle



Inspiration from Space

• Space debris > 7 km/s 

• Whipple Shield → lightweight, layered system 

• Break, absorb, disperse, stage energy dissipation 

• Proven for ISS → adapt for IED fragments?

Monolithic Shield Whipple Shield

International Space Station



Concept: Bringing Whipple Shields 
to Earth

• Underbody shield using Whipple principle 

• Slower velocities → less spallation, more intact 
fragments (still deadly) 

• Aluminium & mild steel → common and 
affordable 

• Lightweight, bolt-on, modular

Visualisation of 
plates with 

existing bash 
plates



Methodology

• Test feasibility with LS-DYNA (SPH) 
as it captures fragmentation, 
spallation, and deformation 

• Little done research for Mild Steel 
shields. 

• 12 simulations at 3.5–5.5 km/s 

• Single layer → fundamental impact 
behaviour 

IED blast

Capability of LS-
DYNA using SPH

Aluminium Whipple shield and impact velocity 



Why Simulation?
• Live tests = dangerous and expensive 

• Numerical simulation = safe + repeatable 

• LS-DYNA - high strain rate problems (car crashes to bullet 
impact)

IED blast

LS-DYNA used for car crash simulationsSPH for Blast Effect on Torso



METHOD

5. Contact & Control: 

• Contact defined using automatic surface 
interaction with adjusted penalty and 
penetration settings.

• DT = 0.05 

• Total time = 20 micro seconds

1. Geometry, Meshing & SPH Setup:

• Shield: cylindrical plate, radius × 0.4 cm, centred at (0, 0, 0).  
Grid: NumX = 50, NumY = 6, NumZ = 50,

• Projectile: SPH sphere, radius 0.5 cm, initial position (0, –0.7, 
0). Grid: NumX = 30, NumY = 30, NumZ = 30

2. Material Model: 
MAT_010_ELASTIC_PLASTIC_HYDRO.

3. Equation of State: Grüneisen EOS, modelling shock 
response under compression and expansion.

4. Initial Conditions:

• Projectile velocity applied via 
INITIAL_VELOCITY_GENERATION card.

• Three velocities tested: 3.5 km/s, 4.5 
km/s, 5.5 km/s (y-direction).



Results

Example of spallation from an Aluminium ballistic against an 
Aluminium shield at 5.5 km/s

Mild Steel Ballistic fragment vs Mild Steel Shield at 5.5 
km/s

Aluminium Ballistic fragment vs Mild Steel Shield at 5.5 km/s

Kinetic energy of the overall system

• All 12 simulations, mild steel absorbed more energy than 
aluminium. 
• Steel’s higher density and toughness explain its superior energy 

absorption. 
• The initial sharp kinetic energy drop = energy absorbed by the 

shield. 
• The later plateau = energy carried by surviving fragments.



Al sphere Al shield 
at 5.5km/s

Al sphere Steel 
shield at 5.5km/s

Steel sphere Al 
shield at 5.5km/s

Steel sphere Steel 
shield at 5.5km/s

Al sphere Al shield 
at 3.5km/s

Al sphere Steel 
shield at 3.5km/s

Steel sphere Al 
shield at 3.5km/s

Steel sphere Steel 
shield at 3.5km/s

Results

• Aluminium projectiles 
fragmented easily; steel 
projectiles were harder to stop. 

• At 3.5 km/s, less fragmentation. 

• At 5.5 km/s, rear-side spallation 
increased, reducing protection 
effectiveness.

• At lower velocities, projectiles 
act more like solid chunks. 

• Lower-speed impacts aren’t 
safer: fewer but heavier 
fragments increase lethality. 

• No single layer was sufficient for 
full protection = need for 
Whipple shields. 



Conclusion and Future Work
• Study tested whether space shielding physics could 

inform lightweight ballistic protection 

• Simulations showed single-layer shields cannot fully 
stop hypervelocity fragments 

• Single layers still absorb significant energy via 
deformation and fragmentation 

• Mild steel identified as a feasible material for shields 

• Findings support multi-layered, spaced shielding for 
improved protection

• Future work with multi-layer configurations & spacing 

• Include blast + fragment coupling using ALE (Arbitrary 
Lagrangian Eulerian) 

• Experimental validation 

• Protect civilians & aid workers 

• Bolt-on, low-cost, replaceable 

• Reduce injury severity → save lives

Current conflicts in OCT25



Adapting Layered Space Shielding for Ballistic Fragmentation

A shield that began in space - to protect 
lives on Earth

QUESTIONS?
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