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754%4 Small satellite missions | have been/am involved in | nlign Spc Sstoms Lobortn

1) 2000~2007: Small sat missions @ U. of Tokyo

2) 2007~2012: (Not so small) deep space
missions @ JAXA

XI-V (2005): 1kg
Tech Demo.

XI-IV (2003): 1kg

World’s first CubeSat
CanSat

(2002)

3) 2012~2023+
Deep space X small sat @ U. Tokyo+JAXA

Hayabusa2 (2009-2012): 600kg
Asteroid sample return

IKAROS (2007-2010): 315kg
World'’s first interplanetary
solar sail

OPENS (202x): ~150kg
First small satellite
mission to Saturn

Comet Interceptor (2029): 35kg
First mission to explore
long-period comet

Hayabusa (2007-2010): 510kg
Asteroid sample return

© Univaoifokyo
EQUULEUS(2022): 11kg
First CubeSat to explore

¥ |
PROCYON(2014): 65kg !unar Lagrange point
World’s first deep space micro-sat



The First Interplanetary Full-scale Micro-Satellite

PROCYON ot

~ Size & Weight

55cm, 65kg *

" Developer G
-Univ. of Tokyo + JAXA

Development time

Development 'budget

Launch date

Dec. 04, 2014 (with Hayabusa2)

R N =




PROCYON proved the p055|b|I|ty of deep space exploration by small satellite
VA Earth’s hydrogen

§ Hayabusa-2
(~600kg)

LAICA
(Hydrogen imager) 500,000 km

50
Kameda et al., 2017 GRL Rayleigh

Comet 67P/Churyumov-Gerasimenkc
Hydrogen around 67P

(ion thruster test in a vacuum chamber)
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Challenges faced in PROCYON mission

- Extremely short development time (only 14 months!)
— Opportunities come suddenly.

— The rideshare interplanetary launch opportunity with Hayabusa-2 was
solicited only 1.5 years before launch, and after being selected for launch,
only 14 months remained for development.

— Solution: Concentration of development resources on aspects specific to deep
space missions

« Maximum utilization of existing LEO microsatellite platform heritages (“Hodoyoshi-3, 4"
bus)

« Major new developments:
communications system (deep space small X-band transponder, X-band SSPA (with
world’s highest efficiency))
propulsion system (cold gas RCS integrated into Xe Ion engine system)
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Explore to Realize

A lot of novel technology demonstrations by PROCYON

DDOR Tone Generator P RN S/Csize: 55cm
’ S S/C mass: 65kg
Thrusters (RCS)

Manufacturer: The University of Tel ™
Thrust: 22 mN WL
Specific impulse: 24.5 s
Propellant: Xenon

Manufacturer: Digital Signal Technologies, inc. s

Max. output power: +9 dBm (each tone) :

Max. tone width: 86 MHz

Max. sweep width: 7.9 MHz

Sweep time: 2 to 40 min

Alan variance: < 1x1071 (1-100 s),
<1x1077 (1000 s) (-20 to +60°C)

High Gain Antenna

Manufacturer: Antenna Giken Co., Ltd.
Tx gain: 25.5 dBi

Rx gain: 24.7 dBi

3dB beam width: +4 deg

/

' Ion Thruster

Manufacturer: The University of Tokyo
Thrust: 300 uN
ecific impulse: 1000 s
Pr8pellant: Xenon
~

———,

-
” X-band Transponder

Manufacturer: Addnics corp.

Max. output power: +17 dBm (tunable)
Receiving level: -150 to -50 dBm
Coherent ratio: 749/880

Modulation: PCM/PSK/PM,

Manufacturer: The University of Tokyo
Aperture: 40 mm

Limiting magnitude: 12
Max. tracking rate: 55 deg/s
Frame rate: 30 fps

Manufacturer: Digital Signal Technologies, inc.
Amplification device: GaN HEMT

Output power: 41.85 £ 0.15 dBm

Efficiency: > 32.7 % (Max. 35.1 %) (-20 to +60°C)

two-way Range & two-way Dopple ”
\K\ DDOR (£0.5F,, £2F;) P s N - -

- e e mm ==

RF Output > 15W  Deep space X-band SSP.
Efficiency > 32.7% with world’s highest efficiency
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EQU U LEUS on SLS Artemis-1

(EQUULEUS = EQUilibrium Lunar-Earth point 6U Spacecraft)

v' Demonstration of the efficient and precise
trajectory control techniques within the Earth-
Moon region by a nano-spacecraft
- Enables deep space exploration by small
satellites using lunar gateway in the future

v Orbital maneuver using a water-based propulsion
system beyond LEO (world’s first!)

v Capture of the entire image of the garth St .
‘ %smasphere T -
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%%4 Internal configuration of EQUULEUS

Solar Array Paddles with SADM (
S50W@1AU

MMA)

S/C size: 6U

Chip-Scale Atomic Clock (CSAC) (JAXA) S/C mass: 10.5kg

Battery (U. of Tokyo)

Propellant (water) Tank
PCU (U. of Tokyo)

CDH (U. of Tokyo)

CubeSat Deep-space Transponder
+SSPA (JAXA)
(64kbps@1.5M km with MGA)

. Lunar impact flash observation
‘ from Earth-Moon L2

N X-Band LGA x5 (JAXA)
X-Band MGA (JAXA)

Attitude control unit
(IMU, STT, SS, RW) (BCT) o
(<0.02deg pointing accuracy)  Water resistojet thrusters

DVx2, RCSx4) (U. of Tokyo
PHOENIX (plasmasphere obs.) (U. of Tokyo) glsp >70s, Delzca(u-v >70m/ys))

DELPHINUS (lunar impact flashes obs.) (Nihon Univ.) Dust detector in a thermal insulator (MLI)
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Challenges faced in EQUULEUS mission

« Extremely critical operation just after deployment (see next slides)
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S+168h S+144h S+120h S+96h S+72h seash”  Ns+24h S+0h
1/
\

DSN pass
\ ! JAXA pass
Lunar Closest Approach \\D_Vl /' S=Separation
5 x10° . . DV1 must be conducted the next day after
: Ty
.[EQUULEUS nominal trajec sep\aratlon_ from the launch vehicle!
(with delta-V) Escape into deep space...
31 \l P - EQUULEUS orbit
R g (without delta-V)
// We must complete the first
g N delta-V maneuver (“DV1”)
=~ ol \\ during this period before Lunar
N Closest Approach
L AN
,2 -
Moon orbit
_3F
_4 | | | | |
-6 -4 -2 0 2 4

X (km) x10°
(Earth-centered inertial coordinate)
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Critical phase operation (actual results) e T v e "

S+168h S+144h S+120h S5+96h S+72h S+48h S+24h S+0h

DSN pass
||

JAXA pass

S=Separation

Explore it ealiz

]
TCM2

x 10 N
5 . ——Approach—- —
. \\ R&RR +|DDOR (JAXA-DSN)
- Propulsion system checkout
DV1 test maneuver

Lunar Closest TCM1 ICM1 rehearsal DV 1

J

Bus checkout

y (km)

X (km) x10°
(Earth-centered inertial coordinate)
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Prepared DV1 backup trajectory plan for every launch candidate

In order to ensure DV1 execution, we prepared these multiple backup
operation plans for all potential launch dates whenever a launch was

slipped.

Teasibility of
\_DV1 operation J NO

Tave = 2.45mN
during DNS pass

______ 2uUDsCpass | | DV1operationstarts | _______Yes T | O
DV1 Operation during 2" UDSC pass |«

Is it possible to
encounter Moon
after LFB1?

1
1
1
1
! L

Continue to transfer |1 4 Start to transfer Transfer to Moon Stay in cislunar space as

X . 11 3" UDSC pass R . . long as possible

to nominal trajectory |! to nominal trajectory encounter trajectory gasp .

! Then, perform science
observations 12
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Challenges faced in EQUULEUS mission

« Extremely critical operation just after deployment
- Common challenges for future rideshare launches to lunar

transfer orbit
— How efficiently this operation and its preparation can be carried out is a key issue
for CubeSat missions that take advantage of the increasing launch opportunity to

the Moon.

« Challenges in mission assurance

— Propulsion system and related safety activities
« Increases the complexity of the system design and the cost of verification

— Design, and verification of FDIR logic and operational training for successful time-

critical orbit control event
« We cannot rely on “reset” in case of anomaly in such a time-critical operation
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Round 2: Lessons Learned

nat are the keys to success in small deep-space missions?
nat lessons should future developers keep in mind?

nat are the common pitfalls or things to avoid?
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Keys to success from Univ. of Tokyo’s perspective

« Ground station support

« FDIR design to realize a “Die Hard” system

« Preparation for the harsh environment in deep space
« Connection with experts on deep space missions
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