

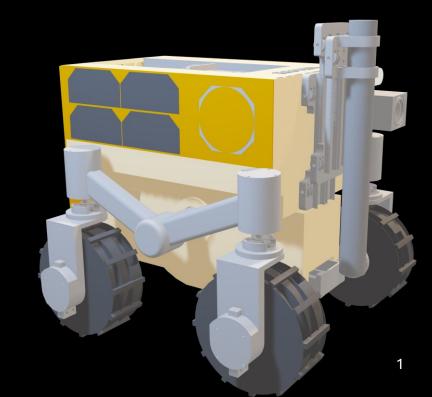




# The 9th Mission Idea Contest: to the Moon



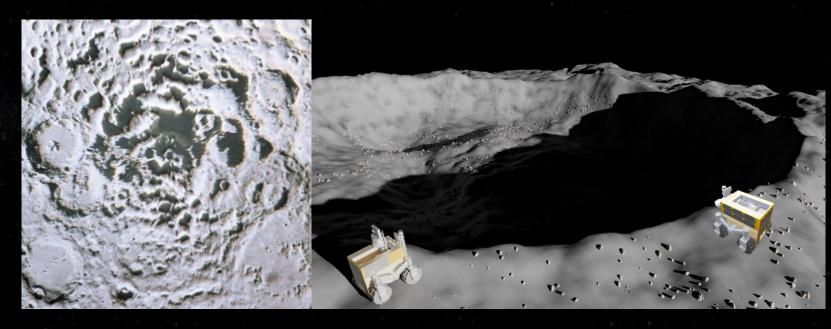
## VISTA-PIPR: Virtual Immersive Sensing & Terrain Analysis for Polar Ice Prospecting Rover


Abdulla Hil Kafi, Yuzuki Fukata, Taichi Nakamura, Kosuke Iwatsu, Jorge Ruben Casir Ricano, Kenji Nagaoka Space Robotics Laboratory · Kyushu Institute of Technology, Japan.












## The Quest for Lunar Water



- Access to lunar water ice is the key to sustainable space exploration (life support, propellant).
- Current orbital data lacks the resolution for mission planning;
- We need meter-scale ground truth that ties H-content to terrain safety and mechanical properties.



## Mission Objective



Map Subsurface Ice

Immersive VR models

Validate Extraction

Multi-Site Survey

**Autonomy Demo** 

Detect & map ≥1 wt% H to ~30 cm across ~500 m<sup>2</sup>

#### **Impact**

Ground truth for Artemis-class ISRU planning



120 MP panoramas + ~1.5M pts/s LiDAR.

#### **Impact**

Digital twin with ≤10 cm horizontal /≤5 cm vertical errors.



Drill ≤30 cm; heat samples to release H<sub>2</sub>O vapor

#### **Impact**

Proof-of-concept extraction (grams scale).

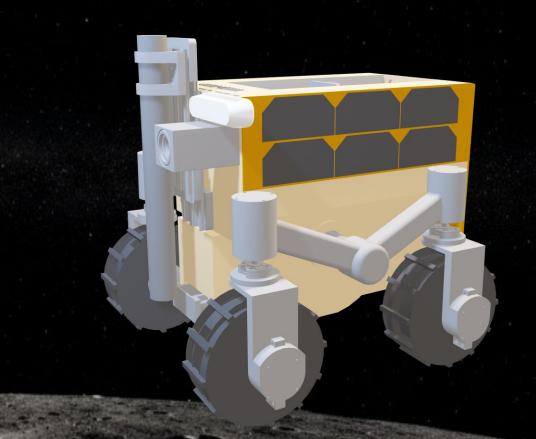
≥500 m traverse; ≥5 distinct sites (rims, PSR edges, slopes, plains)

#### **Impact**

Build statistics across terrains for safety & feasibility

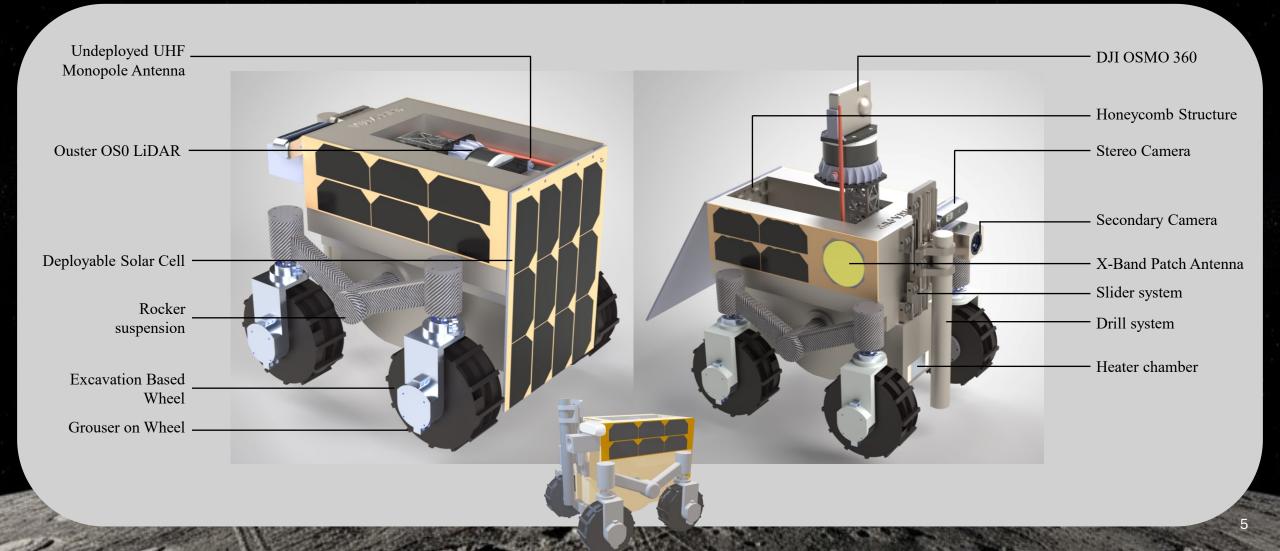


Meta-Reinforceme
nt Learning for
hazard avoidance
and re-planning
Impact


# Execute 1 autonomous excavation + analysis cycle.



## Rover at a glance


Space Robotics Laboratory

- $35 \times 30 \times 30$  cm; 4WD/4WS; rocker suspension; grouser wheels (20–  $25^{\circ}$  slopes).
- Weights 9.79 Kg
- OBC: Jetson Orin Nano (~10 W, ~70 TOPS), ROS 2; multi-bus (CAN/I<sup>2</sup>C).
- Mast: 120 MP RGB + 32-ch LiDAR  $(360 \times 30^{\circ})$ ,  $\leq 10$  Hz); chassis stereo backup.
- Localization: VIO + LiDAR SLAM (  $\pm$  5 cm per traverse).



## Rover at a glance





## Rover at a glance









#### Scientific payload

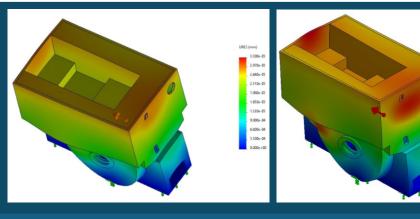
- Mini neutron spectrometer (thermal/epithermal).
- Near-IR spectrometer (1.3–2.5 µm) for H<sub>2</sub>O/OH bands.
- Sample drill (≤30 cm)
   + sealed micro-oven
   (150–200 ° C).



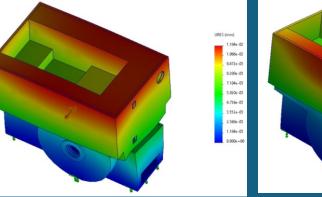


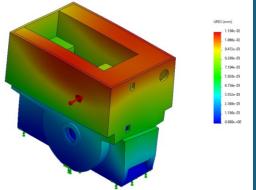
#### **Honeycomb structure**

### Non-honeycomb structure


#### **Analysis Conditions**

- Bottom surface fixed
- Apply 10G load to front and sides for comparison


#### Summary


- The mechanical strength of honeycomb structures varies with the direction of the applied force.
- Nevertheless, they maintain adequate strength and offer significant advantages in terms of weight reduction.

Case 1: Front-Loaded Workload



Case 2: Side-Loaded Workload





## Performance Capability





#### **Energy budget**

- GaAs solar (tilt-adjustable) ~30 W peak; EPS with MPPT.
- Battery: Li-ion 64 Wh; ops focus on daylight (no night survival).
- Daily ops ~8.5–12.5 Wh, ample margin with modest insolation.

#### Links

- UHF rover ↔ lander (435 MHz, 32– 128 kbps, 0.5–2.0 km LOS).
- Lander 
   ⇔ Earth X-band (≥256 kbps via DSN-class ground).
- ≥1.6–6.4 GB return over 14 days; prioritized store-and-forward.

## Concept of Operation



#### **Delivery & Initialization**

- Deploy from lander, establish comms, perform system checks
- Initial 360° panorama + LiDAR sweep > baseline map

#### **Navigation**

- Traverse short distances (10-50 m)
- Autonomy handles hazards (rocks, slopes)

#### Survey

- Panoramic imaging + LiDAR mapping
- Update terrain models & VR digital twin

#### Prospecting

- Neutron spectrometer
- Detect possible subsurface ice deposits.

#### Sampling & Analysis

- If hydrogen >1 wt%, drill upto 30 cm, heat sample
- IR spectrometer measure hydrogen
- Measure released volatiles (water vapor, others).

#### **Data Transmission**

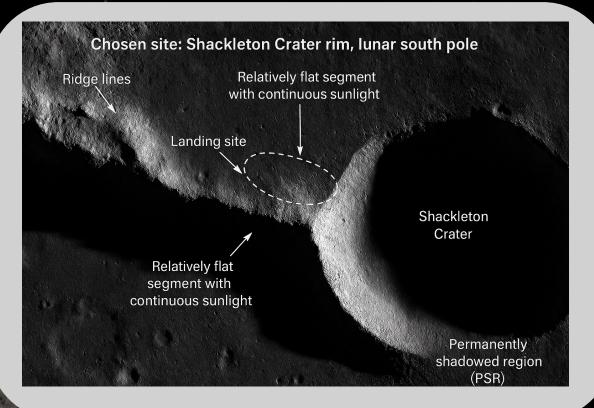
- Relay high-priority science data first.
- Bulk panoramas & 3D maps steadily downlinked.

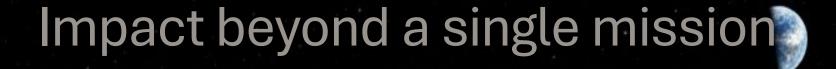


5

C

a





## Landing site: Shackleton rim





- Extended illumination on ridges (10–12 Earth days continuous).
- Proximity to PSRs for hydrogen sensing and context imaging.
- Rugged but traversable; operations 500–1000 m from rim for safety.







- Societal: immersive public access to the south pole; equitable STEM inspiration.
- **Technical:** autonomy (Meta-RL), neutron sensing, high-res mapping for Artemis era.
- Commercial & Education: share datasets & lower barriers for emerging space nations/startups.



## Top Risks & Mitigations





Redundant stereo vision path
Thermal/vibe screening pre-flight

#### **Comms loss**

Relay via lander + DTE beacon Adaptive rate & prioritization



5

#### **Data Loss**

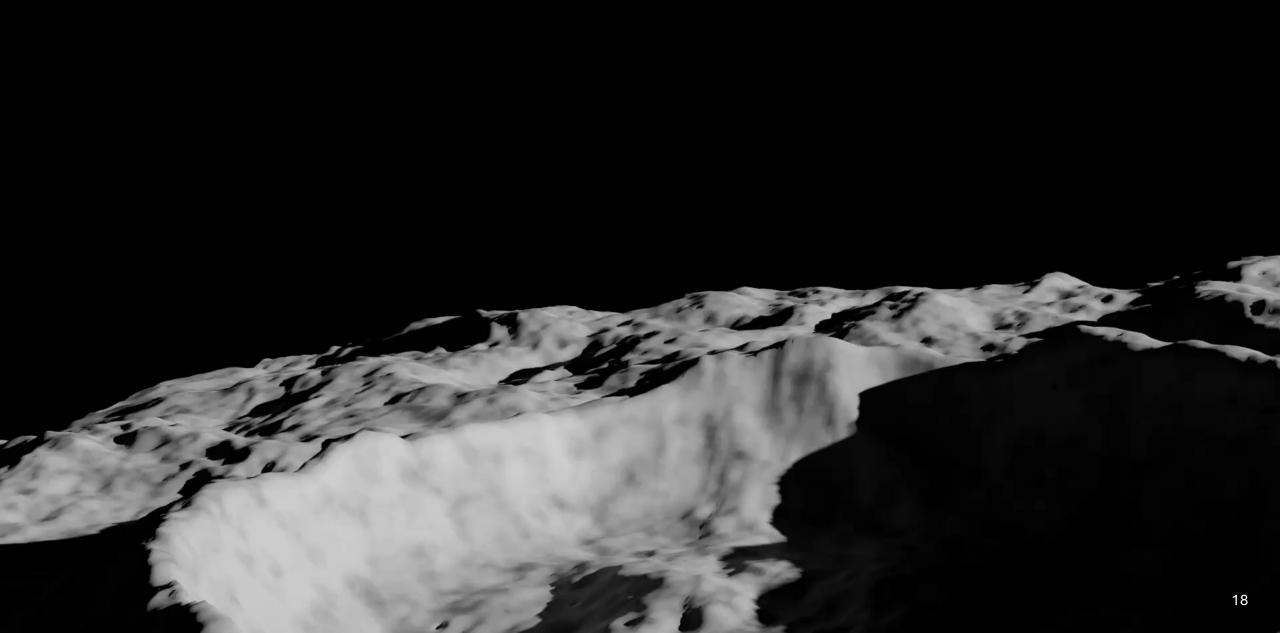
Dual Storage Buffer Incremental data Transmission

#### Power shortfall

Inclined panel design
Conservative, noon-biased scheduling

#### Sampler issues

Mechanical redundancy Alternate ops reconfiguration 3


4





| Category               | Estimated Cost (USD) | Description                                                                           |
|------------------------|----------------------|---------------------------------------------------------------------------------------|
| Hardware & Materials   | ~\$1.5M              | Sensors, avionics, solar panels, batteries, chassis fabrication                       |
| Testing & Facilities   | ~\$1.0M              | Environmental tests (TVAC, vibration, EMC), regolith sandbox, PSR imaging simulations |
| Personnel & Operations | ~\$1.5M              | Student stipends, staff support, mission ops, VR outreach/data pipeline               |
| Total                  | \$4.0M               | Excluding lander and launch (partner provided)                                        |







# Thank you

Questions, collaborations, and flight opportunities welcome.





#### A1. Rover Traversal Capability Equation

To verify the rover's ability to complete a 500 m traverse within a single lunar day:

$$t = rac{d}{v}$$

where:

- $d=500\,\mathrm{m}$  (planned traverse distance),
- $v=0.05\,\mathrm{m/s}$  (nominal speed).

$$t = rac{500}{0.05} = 10{,}000\,\mathrm{s} pprox 2.78\,\mathrm{hours}$$

Even doubling for contingencies (slip, detours, replanning) gives ~6 hours — well within the 14 Earth-day lunar daylight window.



#### A2. Power Budget Validation

#### **Energy Consumption**

| Activity           | Power (W) | Duration   | Energy (Wh) |
|--------------------|-----------|------------|-------------|
| Driving (per day)  | 30        | 12 min     | 6 Wh        |
| Science/Scanning   | 15        | 10 min     | 2.5 Wh      |
| Housekeeping/Comms | 5         | Continuous | ~2 Wh       |
| Total (avg/day)    |           |            | ~10 Wh/day  |

#### **Available Energy**

Solar array: 30 W peak × 2 h of good sunlight = 60 Wh/day

→ Energy margin  $\approx \times 3$  safety factor.

This confirms no risk of depletion during daytime operation.



#### A3. Data Transmission Capacity

#### Surface-Lander UHF Link

- Frequency: 435 MHz, Range: 0.5–2.0 km, Data rate: 32–128 kbps.
- Link margin: 3–10 dB depending on terrain.

#### Lander-Earth X-Band Relay

Frequency: 8.4 GHz, Data rate: ≥256 kbps (DSN class 34 m antenna).

#### Total return over 14 days:

 $\approx$  1.6 GB (at 32 kbps) up to 6.4 GB (at 128 kbps).

That's enough to downlink compressed panoramas, neutron data, and decimated LiDAR point clouds still fit within the 32 GB onboard storage.



#### **A4. LiDAR and Mapping Accuracy**

- LiDAR Performance: 1.5 M points/sec, ≤5 cm accuracy.
- Coverage per stop: ≈100 m² after occlusion corrections.
- Total area: 5 science sites → ~500 m² static mapping + 500 m² in-transit mapping.
- Resolution goal: ≤10 cm horizontal, ≤5 cm vertical.

This accuracy enables realistic VR rendering and autonomous hazard assessment.

#### A5. Neutron Spectrometer Sensitivity

Hydrogen is detected through **neutron flux moderation**:

- Hydrogen absorbs and slows epithermal neutrons.
- Comparing counts from cadmium-covered and bare detectors allows identification of hydrogen presence.

Detection threshold: ≥1 wt% hydrogen equivalent within the top 30 cm consistent with ISRU relevance and the precision of instruments like LEND and HardPix-class spectrometers.



#### **A6. Thermal Sampling Analysis**

- Drill depth: ≤30 cm
- Heating: 150–200 °C
- Expected vapor pressure: detectible within 30–60 s.
- Confirmed using NIR spectral absorption at 1.4 μm and 1.9 μm for H<sub>2</sub>O/OH.

This combination validates both **detection** and **proof-of-concept extraction** of volatiles.



#### A7. Landing Site Context – Shackleton Rim

| Parameter           | Value / Description                                              |
|---------------------|------------------------------------------------------------------|
| Latitude            | 89.9° S                                                          |
| Illumination        | 80–90% of the year (10–12 Earth days continuous sunlight)        |
| Temperature         | −50 °C to 0 °C (sunlit); down to −100 °C in shadows              |
| Terrain             | Slopes 5–15°, rugged but traversable                             |
| Science benefit     | Adjacent to Permanently Shadowed Regions (PSRs) rich in hydrogen |
| Operational benefit | Continuous line-of-sight for UHF and X-band comms                |




| A8. N | ∕lass Bud | lget Summa | rv |
|-------|-----------|------------|----|
|       |           |            | _  |

| Subsystem                 | Mass (kg) | Margin | Final (kg) |
|---------------------------|-----------|--------|------------|
| Structure & Chassis       | 1.50      | +10%   | 1.65       |
| Mobility (motors, wheels) | 1.50      | +10%   | 1.65       |
| Power (battery, solar)    | 2.10      | +10%   | 2.31       |
| OBC & Avionics            | 0.50      | +10%   | 0.55       |
| Comms                     | 0.40      | +10%   | 0.44       |
| Navigation & Sensors      | 0.50      | +10%   | 0.55       |
| Payload                   | 1.60      | +10%   | 1.76       |
| Thermal + Cabling         | 0.55      | +10%   | 0.60       |
| Total                     | _         | _      | 9.79 kg    |

## Two-Way Extendable Mechanism







## Bogie mechanism



