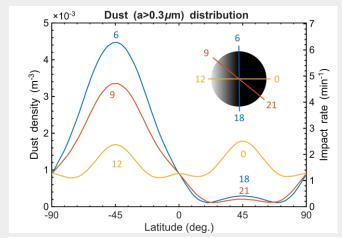
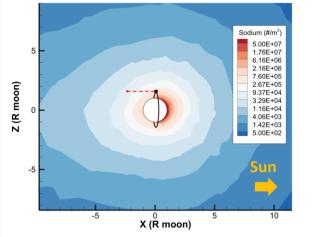

Taiwan India Lunar Dust Analysis

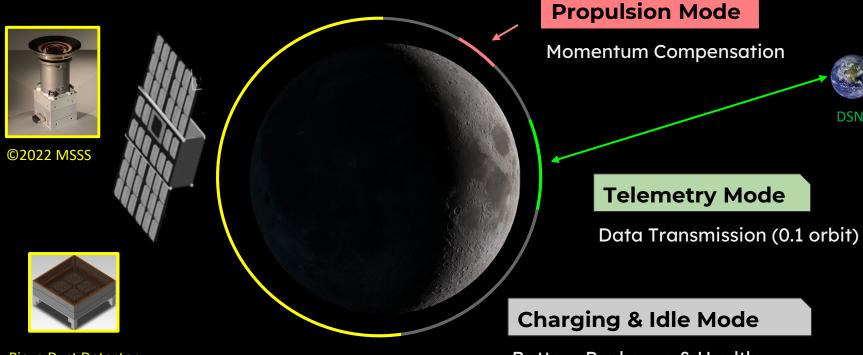
Ying Liao* Yi-Hsuan Li lan-Lin Lai Kang-Shian Pan Hao-En Chang Bo-Chuan Lin Inbisat Yousuf Nath Nikhil Riyaz Ratnesh Mishra


Dust: Revealing the Secrets of Lunar Poles


- Meteoroid impacts are the key driver of:
 (1) volatile evolution in the PSRs;
 (2) Na exosphere.
- High-latitude meteoroid flux is crucial to understand the long-term evolution of volatiles in polar regions.
- NASA's LADEE mission (2013): identified the <u>dust ejecta cloud</u> at ~20 - 100 km around the <u>lunar equator</u> ⇒ dust in the vicinity of the polar region remains uninvestigated!
- Levitation of surface particles within PSRs could <u>affect in situ exploration</u> and carries important <u>implications for future</u> lunar polar missions.

TILDA Mission Objectives

- Identify the size, velocity and spatial distribution of the dust particles around the low-altitude polar region of the Moon.
- Monitor emissions from the lunar sodium exosphere, including its spatial variability and temporal changes under varying lunar phase conditions.
- Establish the possible correlation between lunar exosphere and dust environment.
- Demonstrate technology capabilities of CubeSats at low lunar orbits.



Science Mode

TILDA CONOPS

Dust & Sodium Observation (nightside)

Piezo Dust Detector (Wolf et al., 2012) Battery Recharge & Health Monitoring (dayside)

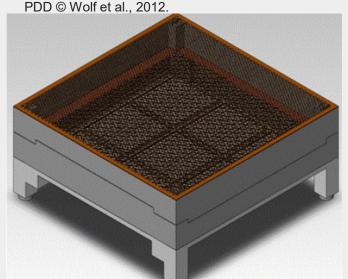
Key Performance Parameters

I. The Dust Detector:

- Resolve particle sizes from micron to sub-millimeter ($^{\sim}1.0 \,\mu m 0.5 \,mm$)
- Achieve sensitivity sufficient to detect impact energies on the order of ~10 nJ.
- Be capable of high temporal resolution such as 0.1 ct/min.

II. The Optical Camera:

 Be equipped with a narrow-band filter with a center wavelength of 589.3 nm and bandwidth 3.5 nm to detect Na emission D1 and D2 lines (589.6/589.0 nm).


©NASA/Goddard/Conceptual Image Lab

Payload

MSSS ECAM-N50

- 350 850 nm (Mono)
- FOV: 44 x 56
- Mass: 700 950 g
- With a sodium narrow band filter (~3 nm)

- Sensor area covers ~ 2,600 mm²
- Particle size: 1 µm to 1 mm (@10 km/s)
- Max measurable impact energy: 1 J

(Note: The related mission failed in LEO and no updated information of PDD. The team are searching for alternatives.)

Baylor U.

(USA)

Piezo

Dust

Detector

Spacecraft Design

Flight dir. (+X)

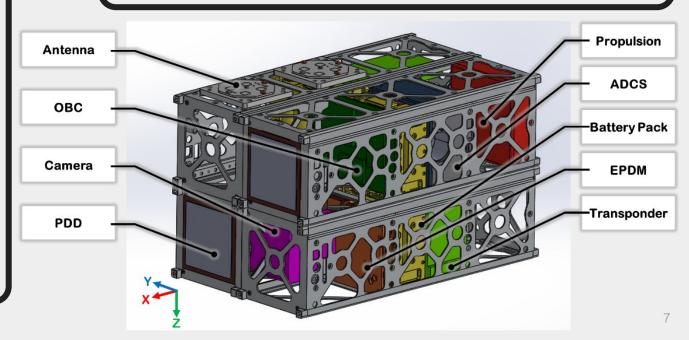
- 2x PDD

Anti-flight dir. (-X)

- 2x Thruster

Anti- nadir dir. (+Z)

- 2x Antenna
- 1x Fine sun sensor
- 4x Solar panels (Hide)


Cross track dir. (+Y)

- 1x Camera

Anti- cross track dir. (-Y)

- 1x Star tracker

- Orbit maintenance and deorbit mauver
- Diagonal thrust balancing
- External disturbance elimination capability
- Attitude control in 3-axis
- Clearest field of view for direct to earth communication
- Avoid direct sun exposure for sensitive image sensor

Spacecraft Design

• TILDA is a 12U CubeSat with mass ~14 kg in total.

Category	Product	QTY	Mass (kg)	Size (mm)	Total Mass (kg)
12U Frame	12U CubeSat Structure - SM12	1	1.750	340.5x226.3x226.3	1.750
OBC	Proton400K	1	0.165	91.44x127	0.165
Transponder	Iris V2.2 SmallSat Deep Space Transponder	1	0.875	100.5x101.0x56.0	0.875
Antenna	S-band Antenna Wideband	1	0.500	80x80x5	0.500
LNA	Iris V2.2 SmallSat Deep Space Transponder		0.080	114.3x46.0x15.5	0.080
SSPA		1	0.150	102.9x55.7x24.4	0.150
EPS	PS High-power Multi-channel EPSM1		0.230	96x90x15.24	0.230
Solar Panels 6U solar panel		5	0.390	-	1.950
Batteries	Battery Module 2 (BM2)		0.710	100x100x48.4	2.840
ADCS	ADCS iADCS400		1.700	95.4x95.9x67.3	1.700
Propulsion	VACCO's Standard MiPS	2	0.848	100x100x36	1.696
PDD	Piezo Dust Detector	2	0.500	80x80x40	1.000
Camera	ECAM-N50	1	0.950	67x57x137	0.950
				Total Mass (kg)	13.886

C&DH & ADCS

PROTON400K

- Dual core microprocessor for redundancy
- High radiation tolerance (>100krad) <u>for server lunar</u> orbit

- 3x Reaction Wheels
- Star Tracker
- Fine Sun Sensor
- Gyro
- Integrated ADCS

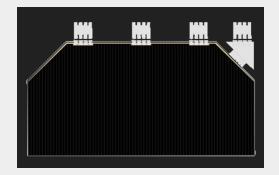
iADCS400

- Three axes reaction wheel attitude control for various pointing requirement.
- Star tracker for accurate attitude determination.
- Fine sun sensor for attitude determination support.
- Gyro for quick attitude acquisition.
- Leverage satellite's thruster for wheel desaturation

Propulsion

Micro Propulsion System

- Each propulsion system provides four thrusters to compensate undesired disturbance at any direction.
- Modular design to have a sufficient total impulse up to 515 N-sec per propulsion system, <u>enough for</u> <u>deorbit operation</u>.
- Low power requirement < 1W for communication and health monitoring, friendly for non-propulsion mode.
- <u>Radiation shielding</u> embedded for radiation resistance.
- Flight proven control software included.
- <u>Flight proven (Mars mission) component</u> and manufacturing method are used to increase the reliability.


EPS

- <u>Radiation tolerance enhance for</u> <u>lunar orbit operation</u>
- High energy transfer efficiency

- Embedded battery heater for dramatic temperature change.
- 168 W output (peak) for thruster.

- Consider End of life (EOL) degradation as 0.81.
- 60 solar cells are used for sufficient power generation.
- 1.21W power generation per cell

EPS Budget

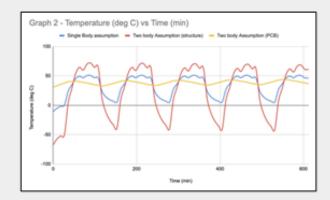

• The EPS can supply power to meet demands at all times.

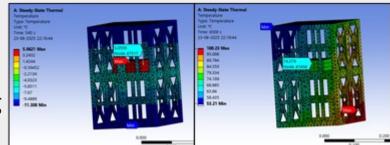
Mode	OBC	EPS	TTC	ADCS	PDD	Camera	Propulsion	Consumption (W)	Duty Cycle
Sys. Avg power (w)	12	2	25 @Tx, 9 @Rx, 29 @all	2	6	3.25 @obs, 1.25 @idle	24 @full, 2 @idle	-	-
Propulsion	On	On	Off	On	Off	Off	On @full	46	0.05/ 0.075
Science (Camera)	On	On	On @Rx	On	On	On @all	On @idle	41.25	0.15
Telemetry	On	On	On @all	On	Off	On @idle	On @idle	48.25	0.1
Idle	On	On	On @Rx	On	Off	On @idle	On @idle	28.25	0.15/ 0.275
Safe	On	On	On @Rx	Off	Off	Off	Off	23	1
Charging	On	On	On @Rx	On	Off	On @idle	On @idle	28.25	0.55
Power Generation/Orbit (W)								36.4	
Power Consumption/Orbit (W)							33.09/31.58		
Total Power /Orbit (W)								3.31/4.82	

TT&C

- <u>Had been use for lunar mission already</u>.
- Design to be compatible with Deep Space Network (DSN).
- Radiation tolerance parts are use for deep space, muti-year mission.
- External Low Noise Amplifier (LNA) to amplify the uplink signal to reduce noise figure.
- High gain antenna to provide a reliable link.

TT&C Budget: Uplink


Ground Station:			Uplink Path:			
Ground Station Transmitter Power Output:	200.0 W	Ground Station Antenna Pointing Loss: 0.4 dB				
1			C Antenna Polarization Losses:	2.7 dB		
Ground Stn. Total Transmission Line Losses: 2.6 dB		Path Loss	221.8 dB			
		Atmosphe	eric Losses:	2.1 dB		
Antenna Gain: 72.8 dBi		Ionosphei	0.4 dB			
		Rain Loss	ses:	0.0 dB		
Ground Station EIRP:	93.3 dBW	Isotropic Signal Level at Spacecraft:		-134.1 dBW		
Eb/No Method						
Spacecraft Antenna Pointing Loss:		0.9	dB			
Spacecraft Antenna Gain:		10.0	dBi			
Spacecraft Total Transmission Line Losses:			dB			
Spacecraft Effective Noise Temperature:			K			
Spacecraft Figure of Merit (G/T):		-19.1	dB/K			
S/C Signal-to-Noise Power Density (S/No):		74.4	dBHz			
System Desired Data Rate:		10000	bps			
Command System Eb/No:		34.4	dB			
Demodulation Method Selected:		QPSK				
Forward Error Correction Coding Used:		None				
System Allowed or Specified Bit-Error-Rate:	1.0E-05					
Demodulator Implementation Loss:		1.0	dB			
Telemetry System Required Eb/No:		9.6	dB			
Eb/No Threshold:		10.6	dB			
System Link Margin:		23.8	dB			


TT&C Budget: Downlink

Spacecraft:	Downlink Path:				
pacecraft Transmitter Power Output: 3.8 W		Spacecraft	pacecraft Antenna Pointing Loss: 0.9 dB		
In dBW:	S/C-to-Ground Antenna Polarization Loss: 0.0 dB				
In dBm:	Path Loss: 223.1 dB				
Spacecraft Total Transmission Line Losses:	0.4 dB	Atmospher	2.1 dB		
Spacecraft Antenna Gain:	10.0 dBi	Ionospheric Loss: 0.8 dB			
Spacecraft EIRP:	15.4 dBW	Rain Loss:		0.0 dB	
	Isotropic S	-211.5 dBW			
Eb/No Method					
Ground Station Antenna Pointing Loss:		0.6	dB		
Ground Station Antenna Gain:		74.2	dBi		
Ground Station Total Transmission Line Losses	2.2	dB			
Ground Station Effective Noise Temperature:	422	K			
Ground Station Figure of Merit (G/T):		60.8	dB/K		
G.S. Signal-to-Noise Power Density (S/No):	77.3	dBHz			
System Desired Data Rate:	400000	bps			
Telemetry System Eb/No for the Downlink:	21.3	dB			
Demodulation Method Selected:	QPSK				
Forward Error Correction Coding Used:	None				
System Allowed or Specified Bit-Error-Rate:	1.0E-05				
Demodulator Implementation Loss:	0.5	dB			
Telemetry System Required Eb/No:	9.6	dB			
Eb/No Threshold:	10.1	dB			
System Link Margin:	11.2	dB			

Thermal Analysis

- Both simplified and detailed modeling show the s/c stays within survivable limits in sunlight and eclipse, with electronics in the 30 - 50 °C zone.
- Good conduction through the aluminum chassis and continuous avionics power smooth out temperature swings, protecting PCB assemblies from harsh external extremes.
- Passive thermal control is enough:
 Simple measures such as MLI patches and improved board-chassis interfaces can keep structural temperatures tidy without adding mass or complexity.

Orbit

I. E-M Transfer

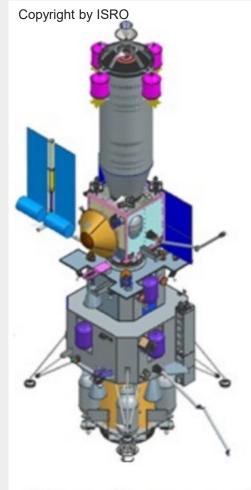
③ Translunar Injection (TLI)

- Altitude: 100 km
- Inclination: 90°
- Period: ~2 hours

Total $\triangle v = 4.2 \text{ km/s}$

- 1 Launch Vehicle Takeoff
- ② Launch Vehicle & Spacecraft Separation
- ③ Translunar Injection (TLI) Maneuver

II. Low Lunar Orbit



- (4) Translunar Cruise
- (5) Lunar Orbit Insertion Maneuver
- **(6)** Lunar Satellite Deployment

Implementation

- Taiwan-India Collaboration
- Estimated cost: \$19 Million USD
- Chances of piggyback of Chandrayaan-4 (~2028)

Chandrayaan-4

Risk Analysis

Risk Item	Risk Level	Mitigation Action
Potential communication delays or data loss during lunar operations	Low	Develop robust communication protocols and redundant data storage systems
Dependence on governmental launch providers may lead to schedule delays	Low	Secure backup launch options and maintain flexibility in scheduling
Insufficient sensitivity and detection range of piezoelectric dust detector	Medium	Extensive testing and calibration during the development phase
Incapability of spacecraft subsystems withstanding the lunar environment	Medium	Rigorous environmental testing and use of proven, space-qualified components
Insufficient funding affecting project timelines and scope	High	Diversify funding sources and establish contingency budgets

Summary

Polar Dust Science

TILDA maps dust size, speed and motion in low-altitude lunar polar orbits to decode meteoroid impacts and volatile evolution.

Dust-Exosphere Connection

Dual sensing of dust impacts and sodium emissions uncovers how surface activity shapes the lunar exosphere.

Miniaturized Tech Demonstrator

A 12U CubeSat with a piezoelectric dust detector and compact CMOS camera proves small spacecraft can deliver big science.

Taiwan-India Partnership for Artemis Era

An international collaboration advancing lunar knowledge and technology that strengthens future exploration on the Moon.

Reviewer's comments in pre-MIC9

Q: The section "orbit description" mentions that ionised lunar dust clouds are expected to cause attitude disturbances for the spacecraft. Is it possible to roughly quantify the expected perturbation? The attitude disturbance, in itself, could provide information on the dust clouds, if it is large enough.

A: Our simulation shows that the CubeSat will have -34 V surface potential with plasma conditions. \Rightarrow the total charge Q = CV ~4.5×10⁻¹⁰ C. Assume the magnetic field B = 100 nT \Rightarrow Lorentz force F = QvB ~7×10⁻¹⁴ N. CubeSat acceleration a ~3.6×10⁻¹⁵ m/s². If we consider the ambient electric field E = 1 mV/m, then a ~2.3×10⁻¹⁴ m/s². Compared to lunar gravity (1.3 m/s²) or solar radiation pressure perturbations (10⁻⁸ m/s²), this is still 6 – 14 orders of magnitude smaller.