
Exploring Lunar Ionosphere Characterization through Multi-CubeSat Occultation with Ranging Technology and Radiation Environment Analysis

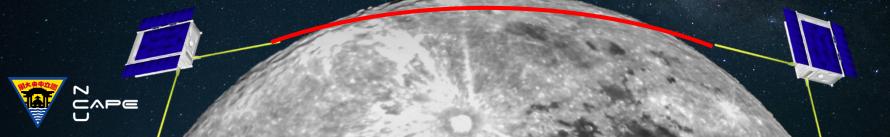
YiYu Chang, Yuhsiu Tien, Chieh Lung, Jason Yu, WeiChih Lin, Yihsuan Chou, Roger Tsai, Terry Chen, Yi Duann, Loren Chang

Contact: changjacyy@gmail.com
Department of Space Science and Engineering,
National Central University, TAIWAN.

Mission Overview:

Total mass for a CubeSat: 11.7 kg.

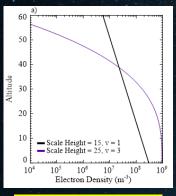
Our mission includes two 6U CubeSats into low lunar orbit.

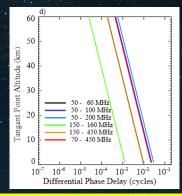

Mission Objective 1 – Radio Occultation

Mission Objective 2 – Radiation Environment

Extend Mission Objective 1 – Radiation with the space weather and ionosphere.

Extend Mission Objective 2 – Orbit determination


Extend Mission Objective 3 – Range measurement



Objective 1 – Radio Occultation

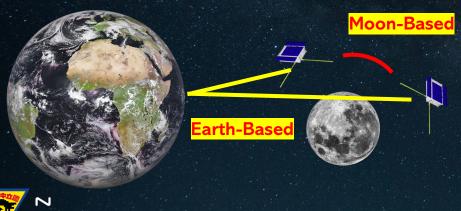
Theory of Lunar Ionosphere

- 1. The lower the frequency, the more significant the phase delay.
- 2. Simulating lunar ionospheric Total Electron Content (TEC).

LOS TEC =	$\int N_e dl$		(3)
-----------	---------------	--	-----

. I	Phase delay
f	Freq. of electromagnetic wave
TEC	Representing the number of electrons in a column along the signal path
Ne	Electron density

Electron Density

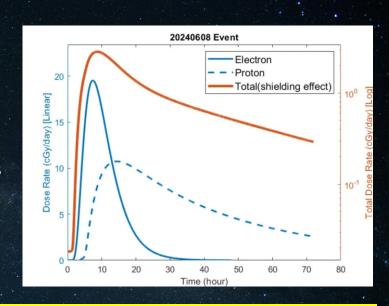

Different Phase Delay

(C. Watson et al, 2023)

Objective 1 – Radio Occultation (cont.)

Advanced

Our mission can take broader measurements over the Lunar without interference from Earth's ionosphere.

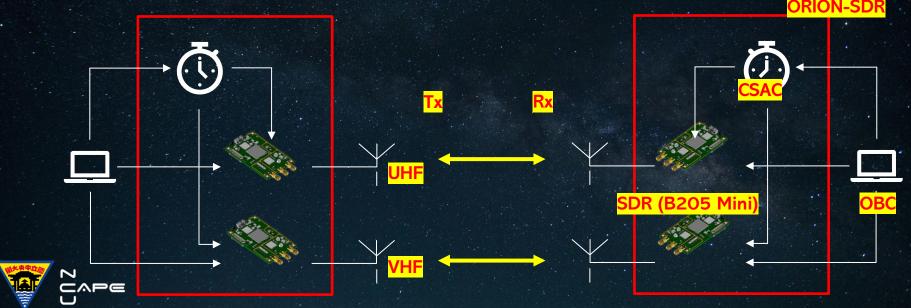


Objective 2 – Radiation Environment

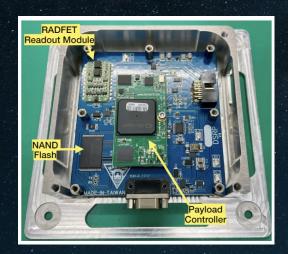
For example, on June 8, 2024, an M9.7-class solar flare and the associated CME occurred.

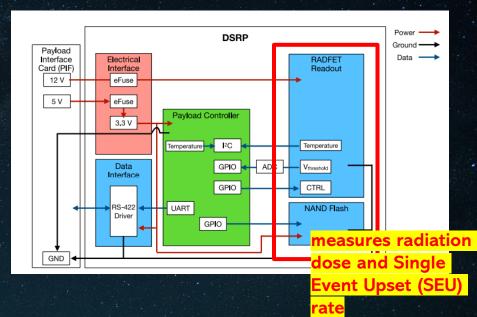
Based on particle propagation modeling, the figure shows dose rate of electrons and protons.

The red curve represents the combined dose rate, taking into account the shielding effect.



Payload 1: ORION-SDR


(Occultation & Ranging Integrated Orbital DeterminatioN - SDR) - TRL3

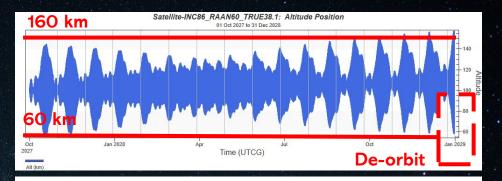

- M1. Characterize spatial and temporal distribution of lunar ionosphere.
- M2. Determine spacecraft's orbital dynamics with respect to the lunar environment.
- M3. Determine relative distance between the two spacecraft.

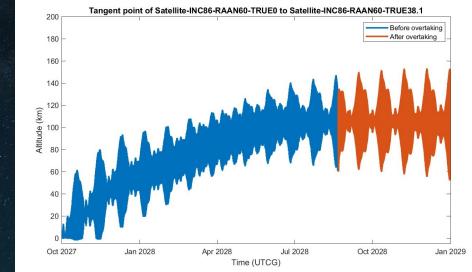
Payload 2: Deep Space Radiation Probe (DSRP)

- M1. Understand the lunar radiation environment and high-energy particles.
- M2. Understand the link between space-weather events and radiation.

Orbit Design:

We choose a Quasi-frozen orbit to ensure that relative distance between two satellites remains as stable as possible. The high inclination enables the coverage of lunar polar regions.

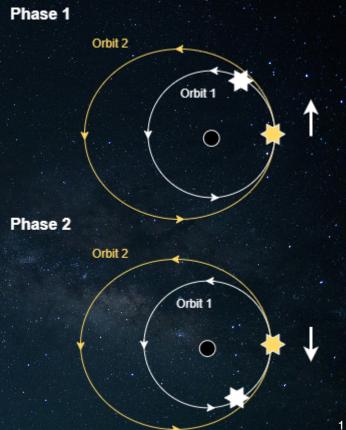

Orbit Parameters	Reason					
Inclination (i = 86~90, Quasi-frozen Orbit)	Longer time for communication					
Range between the satellite = 1000 km						
a = 100 km	Simulation result					
e = 0						
Gravity LP100	Worst case (STK)					
Same orbital plane	Forward-and-aft configuration					



STK Altitude Analysis:

The altitude of CubeSats changes due to the Moon's uneven gravitational field, varying between 160 km and 60 km without crashing into the Moon.

The tangent-point altitude varies from about 0 km at the start to roughly 100 km by the end without maneuver.

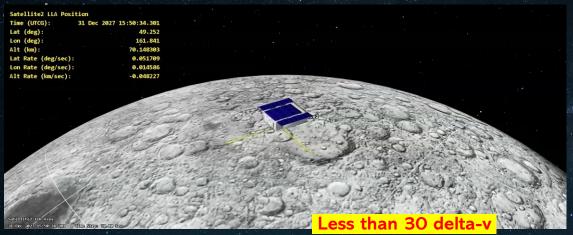


Maneuver:

Conditions:

- 1. When the satellites move too close to each other, there is a potential risk of collision.
- 2. When they drift too far apart, occultation cannot be achieved.

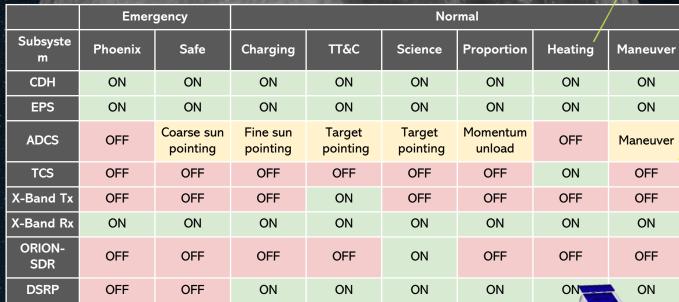
The rear satellite (in yellow) executes dual burns of 5.15 m/s at perigee over 11 lunar orbits (≈21.6 hr). Temporarily changing its orbit into an elliptical one. Afterward, it returns to the original circular orbit to complete precise phasing and move ahead of the leading satellite.



COSPAR Planetary Protection Policy CATEGORY IIA:

Spacecraft control should align with planetary protection

De-orbit and crash in 51°N latitude


Permanently Shadowed Region (PSR)

Concept of Operation:

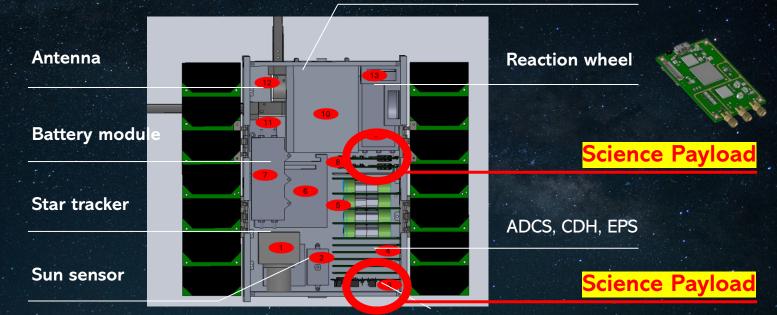
Science Mode

TT&C Mode

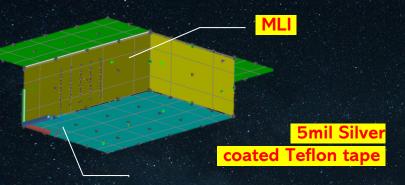
Charging Mode

Proportion Mode

Safe Mode

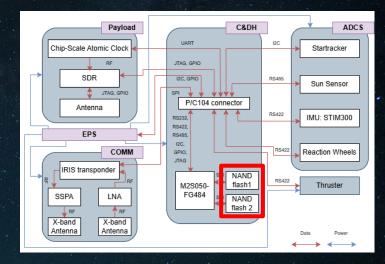

Phoenix Mode

Maneuver Mode


Spacecraft Interior:

Based on 2024 State-of-the-Art Small Spacecraft Technology Report,
all subsystems have achieved TRL >7
Thruster

Thermal


Propulsion

Mode	Cold Gas	Green Monopropellant		
Purpose	Momentum Unloading	Maneuver and Orbit Adjustment		
Propellant/ Event (g)	0.665	50.9		
Annual Usage (g/yr)	69.16	203.6		
Propellant Margin	67.83%	48.9%		

EPS

ltem	Power (Wh)
Total Consumption	19.027
Power Generation	28.333
Margin	32.85%

CDH

Implementation Plan:

IMPLEMENTATIO N PLAN		2024	1		20	25			20	26	40		20	27	18		20	28		20 29
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	QЗ	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
PrePhase-A																	Spirit.			
Phase-A																				
Phase-B	94												7 34			Ye or				
Phase-C		1	•																	
Purchase																				
Product Test																				
Phase-D			Wall.																	
Vibration Test														Marie .						4
Radiation Test														1						
Thermal Vacuum Test																				
Test Margin																				
Launch																				
Phase-E																				
Mission Operation																				
Data analyze																				
Phase-F		2.66																		

Human Resources: Students

	Number of	Time	Cost
	people	[Q]	[USD]
	.".		
PrePhase-A	3	1	2700
Phase-A	5	- 1	4500
Phase-B	5	1	4500
Phase-C	5	3	13500
Purchase			0
Product			0
Phase-D	10	3	27000
Vibration			1500
Radiation			120
Thermal Vacuum			3700
Margin		The second	. 0
Launch			0
Phase-E	5	5	22500
Operation 💮			0
Data	the second		Q
Phase-F	5	1	4500
CubeSats			
Components (x2)			345932
Total Cost			430452

Implementation Plan:

Assemble 3D model

Air-bearing table test

Risk Matrix:

		The same of the sa				
ID	Risk	Consequence	Likelihood	Risk Score	Solution	
i	Loss of Position Information	4	4	22	Transmit ground station signal to inform satellite position and time	
2	Insufficient Funding	5	3	21	Participate in competitions to capture exposure levels	
3	Gravity	Gravity 5 2 17 Simulate lunar gra				
4	Technical Knowledge Transferred	4	2	14	Manage using a note-taking application and record in accordance with ECSS standards.	
5	Lunar Eclipse Occurrence	5	1	12	Add a heater to prevent instrument damage	
6	No lunar flight heritage	2	3	10	Perform radiation testing (TID) and thermal vacuum tests for components without lunar flight heritage.	
7	Power <100% duty cycle	2	2	8	Implement reduced-duty-cycle mission modes or switch to safe mode.	

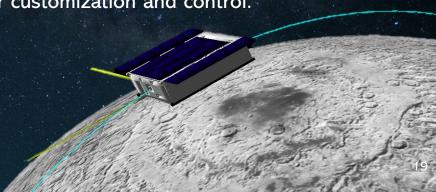
Exploring Lunar Ionosphere Characterization through Multi-CubeSat Occultation with Ranging Technology and Radiation Environment Analysis.

Spacecrafts: 2 six-unit CubeSats.

Objectives: Radio Occultation and Radiation Environment.

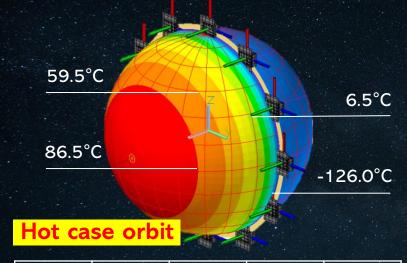
SDG: 4 Quality Education; 9 Industry, Innovation and Infrastructure; 17 Partnerships for the Goals

Designing the payload in-house allows for greater customization and control.


Student advance: Highly creative and passionate

Our Team:

We are a student team from the Department of Space Science and Engineering, National Central University (NCU), Taiwan, and supported by the Center for Astronautical Physics and Engineering (CAPE), NCU, Taiwan.


Name	Degree	Affiliation	Work	Expertise	
YiYu Chang	Master Student	NCU Tron Future	PM Science, COMM	СОММ	
Yuhsiu Tien	Master Student	NCU	ADCS, Orbit	ADCS	
Terry Chen	Bachelor Student	NCU	Science	COMM	
Jason Yu	Master Student	NCU	STR	STR	
Roger Tsai	Bachelor Student	NCU HEX20	CDH, Modes	FSW	
Chieh Lung Master Student		NCU	Thermal Control	Thermal Control	
Dr. Yi Duann	Postdoc	NCU	Instructor		
Prof. Loren Chang	Professor/ Dept. Chair	NCU	Instructor		

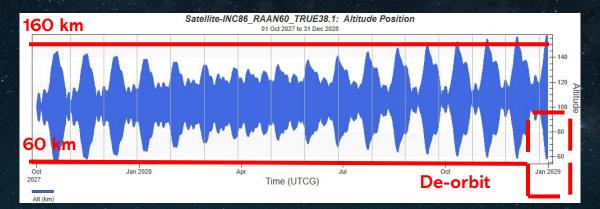
More Lunar RO Missions:

Satellite Name	Launch Year	Volume	Weight	RO Experiment Time	Measured TEC Density Range	Observation Features
Pioneer 7	1966	20.8 m ³	146 kg	1966 (Lunar flyby)	Upper limit around 40 cm ⁻³	Provided the first data on the lunar ionosphere, indicating a low ionospheric density upper limit.
Luna 19 & 22	1971, 1974	82.4 m ³	5,700 kg	1971, 1974	Range 400–2000 cm ⁻³	Detected ionosphere above the lunar dayside, with density decreasing exponentially with altitude; peak ionospheric density observed at 2–10 km altitude.
SMART-1	2003	1.57 m ³	367 kg	2003–2006	Around 100 cm ⁻³	Dual-frequency measurements using S-band and X-band showed low ionospheric TEC.
Kaguya	2007	21.2 m ³	2,914 kg	2007–2009	Average around 300 cm ⁻³ , local peaks up to 1000 cm ⁻³	Dual-frequency technique observed lower-than- expected ionospheric density, mainly at high latitudes; occasional higher densities in certain local areas.
Chandrayaan-1	2008	3.375 m ³	1,380 kg	2008–2009	Around 300 cm ⁻³	Two-way radio occultation measurements in polar regions indicated ionospheric density near the terminator.
ARTEMIS	2011	2.057 m ³	77 kg	2011–now	Specific TEC values not provided, showing ionospheric density variations	Dual-satellite partial RO experiments mainly observed plasma conditions, providing limited lunar ionospheric data.

Thermal Control:

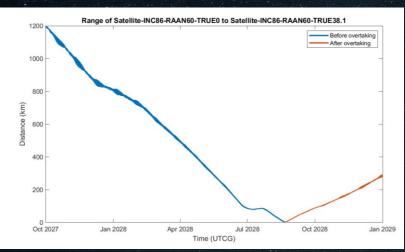
	Orbit cold	Orbit hot	Eclipse	Unit
Beta angle	65	90	65	degree
Solar Flux	1315	1421	581.2	W/m²
Albedo	0.07	0.2	0	

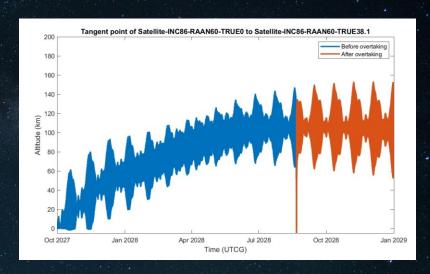
	Thermal Control Design		
+y, +x, -x, +z chassis	MLI		
Battery box	MLI		
Battery mounting	isolated mount		
-y, -z chassis	silver coated teflon tape (5mil)		


RO Link Budget:

Fundamental Parameter				
Bandwidth	10 ⁷			
Modulation	BPSK			
Frequency [MHz]	450			
Require BER	10 ⁻⁵			
Power Parameter				
USRP Tx Power [dBm]	10			
Pass Loss [dB]	-149			
Rx System Gain [dB]	65			
Noise Parameter				
Noise Floor [dBm/Hz]	-174			
CNR Calculation				
Require CNR	9.6			
Final CNR	31			
Margin	21.4			

STK Altitude Analysis:


- Start time: 2027/10/01 04:00:00 UTCG.
- Duration: About 1 year.
- Propagator: High Precision Orbit Propagator (HPOP), Coord system: International
 Celestial Reference Frame (ICRF) and Mean Earth (ME) Reference System.
- Perturbations: LP165P (48,48), Three body (Earth, Sun gravity), Solar Radiation
 Pressure (SRP).



STK Altitude Analysis:

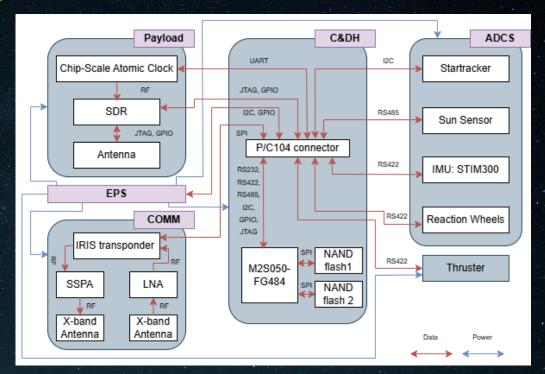
The tangent-point altitude varies from about 0 km at the start to roughly 100 km by the end without maneuver.

ADCS & Propulsion

- ArgoMoon Micro Propulsion System (MiPS)
- Cold Gas Mode (Isp ≈ 60 s) is used for momentum unloading, triggered ~2 times per week (~104/year), consuming only ~69 g annually.
- Green Monopropellant Mode (Isp ≈ 230 s) is used for larger maneuvers, here planned at 4 per year (10.145 m/s each), consuming ~214.4 g annually.

Mode	Cold Gas	Green Monopropellant	
Purpose	Momentum Unloading	Maneuver / Orbit Adjustment	
ΔV / Event (m/s)	0.00875	10	
Event Frequency	2 per week → 104/year	4 per year	
lsp (s)	60	230	
Propellant / Event (g)	0.665	53.6	
Annual Usage (g/yr)	69.16	214.4	
Remaining Propellant (g)	145.84	205.6	

EPS


- Battery Type: Panasonic NCR18650GA (3.6V, 3500mAh)
- Battery Pack: 4S × 3P = 12 cells
- Nominal Voltage: 14.4 V
- Pack Capacity: 10.5 Ah \rightarrow 151.2 Wh total, 121 Wh usable (80% DoD)
- Orbit Condition: 100 km LLO, ~1.96 hours/orbit
- Orbit Energy Demand: ~42.2 Wh
- System Margin: ~2.9× per orbit
- Peak Load Supported: Up to 30 W with ≥20% SOC
- Charging Method: Body-mounted solar arrays + MPPT converters

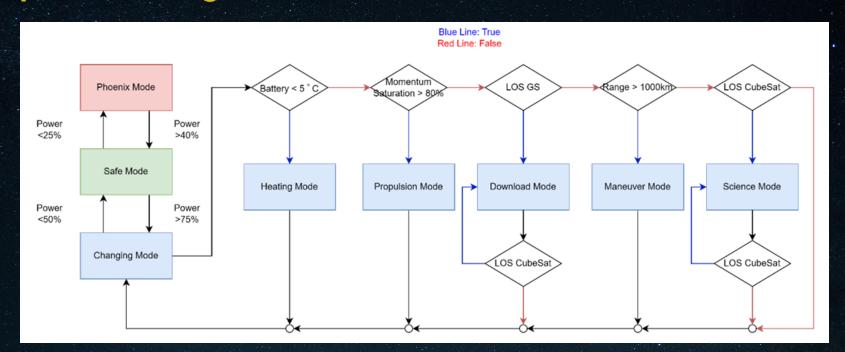
ITEM	POWER (Wh)	DUTY CYCLE	
EPS Consumption	1.78	100%	
Momentum Unload	20.00	0.80%	
Command & data	1.40	100%	
ADCS	11.545	100%	
Telecom	7.20	1%	
Payload-dsrp	0.40	100%	
Payload-usrp	4.50	50%	
Payload-iris	12.80	10%	
Payload-atomic Clock	0.14	100%	
Total	19.027		
Power Generation	28.333		
Margin		32.85%	

CDH Architecture

- Two NAND flash ICs for data storage to mitigate radiationinduced damage to the hardware.
- Currently assume the use of the NASA JPL IRIS transponder to support deep-space navigation and data downlink, together with its associated amplifier equipment.
- An SDR is equipped with an external chip-scale atomic clock (CSAC), which serves as a stable oscillator.

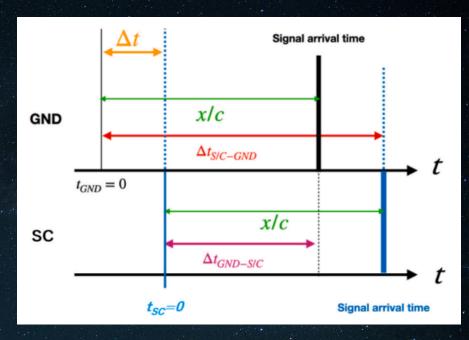
Science Matrix - ORION SDR

Science/Mission	Objectives		Measurement Requirements (Capabilities)	
Objectives	Measurement	Instrumentation		
在一个方面的	Mission-C	ORION SDR		
M1. Characterize the spatial and temporal distribution of the lunar ionosphere.	Dual-frequency carrier-phase and group-delay measurements on the	1. B205-mini SDR x2 2. VHF deployed antenna 3. UHF deployed antenna	Dual Frequency: 450 MHz & 75MHz	
	intersatellite-link.	4. CASA(chip scale atomic	Modulation: BPSK	
M2. Determine the spacecraft's orbital dynamics (position, velocity, acceleration) with respect to	Continuous Doppler tracking radio link.	clock)	Chip Rate: 1.023 Mcps (MHz chips s ⁻¹)	
the lunar environment.	Code-phase offset of the GPS-style Gold PRN		Sequence Structure: Gold Code	
M.3 To determine, in real time, the relative distance between the two spacecraft.	embedded in the inter- satellite link			



Science Matrix - DSRP

	Science Tra	ceability Matrix		
C /M:	Objectives		Measurement	
Science/Mission Objectives	Measurement	Instrumentation	Requirements (Capabilities)	
	Missi	on-DSRP		
M1. Understand the lunar radiation environment and	Radiation dose and dose rate.	RADFET NAND Flash	Power: < 0.9 W	
high-energy particles.	SEU Rate		Maximum Data Rate: 50 bytes/min	
M2. Understand the link				
between space-weather			Dose Resolution:	
events and radiation.			<1 mRad	
			Spatial resolution ≤4° in latitude and longitude	


Operation Logic:

Asynchronous one-way range measurement method:

- The ground station (GND/GS) and the spacecraft (S/C/SC)—each continuously transmits a time-stamped sequence
- Key point: adding the two pseudoranges and dividing by two cancels the clock offset, yielding the true range
- If the S/C clock runs ahead of the ground clock ($\Delta t > 0$, defined as S/C clock minus ground clock).
- The pseudorange measured at the S/C is biased long, and the pseudorange measured at the ground is biased short.

(J. Kawaguchi et al, 2024)

Maneuver:

• lsp: 230 s

• Satellite mass (m0): 11.77 kg

Δv per maneuver (total): 10.291 m/s

• Propellant per maneuver (approx): ≈

53.6 g

• Tank usage: ≈ 38% of 420 g

Number of Waiting Orbits	Single Δv (m/s)	Total Δv (m/s)	New Semi- Major Axis (km)	New Orbital Period (hr)	Waiting Time (hr)	Propell ant Mass (g)
10	5.66	11.32	1850.2	1.9838	19.6	68
11	5.145	10.29	1849.0	1.9819	21.5	63
12	4.717	9.433	1848.0	1.9803	23.5	53
13	4.354	8.707	1847.2	1.979	25.5	49