

Sponsored by

Introduction to the 9th Mission Idea Contest: to the Moon (MIC9)

Lunar Mission

Prof Herman Steyn

https://www.spacemic.net/

Contents

- MIC9 Overview
- Background
- MIC Winner's Mission Ideas
- Comparison with previous MICs
- Requirements
- Process and Timeline
- Evaluation Criteria
- Awards/Prize
- Finalists Presentation

MIC9 Overview

The lunar missions consider the use of one or more CubeSats placed into lunar orbit or one or more rovers deployed on the lunar surface. Designs are encouraged to demonstrate originality, impact, engineering elegance, and feasibility.

Category:

- Lunar Orbit CubeSat Mission (LOCM)
- Lunar Surface Rover Mission (LSRM)

<u>Important dates:</u>

25 abstracts were submitted from 14 countries.

Abstract submission due: April 15, 2025

Notification: June 12, 2025

10 finalists and 4 semi-finalists were selected.

Full paper submission(Finalists): August 25, 2025

Final presentation: November 1, 2025 in Japan

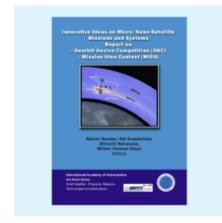
(Selected finalists will make a presentation at MIC9.)

Background (1)

- Mission Idea Contest was launched in 2010 to encourage innovative exploitation of micro/nano-satellites to provide useful capabilities, services.
- It provides aerospace engineers, college students, consultants, and anybody interested in space with opportunities to present their creative ideas and gain international attention.

MIC4 finalists and reviewers, Oct. 21, 2016, Verna, Bulgaria

MIC8 finalists and reviewers, Nov. 29, 2023, Tokyo, Japan


PreMIC9 finalists and reviewers, Nov. 27, 2024, Stellenbosch, South Africa

Background(2)

8 MICs and 5 Pre-Workshops were successfully organized in 2011-2024.

- Results
 - Potential utilization of micro/nano-satellites were provided in the large number of submitted proposals
 - Four books and three e-books were published as IAA book series

https://iaaspace.org/product-category/pub/bookseries/

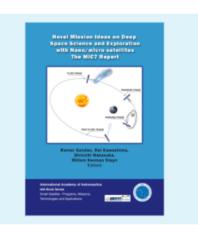
Inventive Ideas for Micro/Namo-Satellites

The Mich Report

Inventive Consensation

Rainer Sandou, Rel Kneeshina,

Levy Jan Sales


Levy Jan Sales

Mich Rose

Boltes

Deland

Innovative Ideas on Micro Nano-Satellite

Inventive Ideas for Micro/Nano-Satellite
The MIC3 Report

Proceedings of the MIC5 / MIC6 / DMC2

The MIC7 Report

The MIC8 report

MIC Winners' Mission Ideas

	Proposed idea	Country
MIC 1 (2011,Tokyo)	Integrated Meteorological / Precise Positioning Mission Utilizing	Japan
(constellation)	Nano-Satellite Constellation	(professional)
MIC 2 (2012, Nagoya)	SOLARA/SARA:Solar Observing Low-frequency Array for Radio	USA
(Satellite Design)	Astronomy/ Separated Antennas Reconfigurable Array	(student)
MIC 2 (2012, Nagoya)	Underground and surface water detection and monitoring using	South Africa
(Business model)	a microsatellite	(student)
MIC 3 (2014, Tokyo)	Clouds Height Mission	Germany, Italy, Slovenia
		(professional)
MIC 4 (2016, Bulgaria)	CubeSat constellation for monitoring and detection of bushfires	Australia(student)
BAIC F (2040 F	in Australia	Tainne a LICA Ladia
MIC 5 (2018, France)	Smallsat Ionosphere Exploration at Several Times and Altitudes,	Taiwan, USA, India (student)
MIC 6 (2019, Tokyo)	MUSA: An ISS Experiment for research of a dual culture for	Costa Rica(student)
(ISS-IceCube)	Panama Disease	
MIC 6 (2019, Tokyo)	Spectrum Monitoring from Space with i-SEEP (SMoSiS)	Philippines
(ISS-iSEEP)		(professional)
MIC 7 (2022, Tokyo)	PARS: Precursor Asteroid Remote Survey	Turkey (student)
MIC 8 (2023, Tokyo)	MOTHS: Moon Observation Through Hyperspectral Satellites	Italy (student)

MIC1-9 & Pre-MIC3-9 Comparison

	MIC1	MIC2	PreMIC3	MIC3	PreMIC 4	MIC4	PreMIC5	MIC5	MIC6	MIC7	PreMIC 8	MIC8	PreMIC9	MIC9
Satellite mass	< 15 kg	<50 kg	<50 kg	<50 kg	<50 kg	<50 kg	<50 kg	<50 kg	ISS Platform	Deep Space	<6'U	<6'U	<12'U	<12'U
Number of satellites	2 or more (constellati ons only)	1 or more	1 or more	1 or more	1 or more	1 or more	1 or more	1 or more	N/A	N/A	2 or more	2 or more	1 or more	1 or more
Rover mass													<10 kg (Maximum Convoy Mass)	<10 kg (Maximum Convoy Mass)
Number of Rover													1 or more	1 or more
	1	2	2	1	2	1	1	1	2	2	1	1	2	2
Category	Mission idea for nano- satellite constellati on	Mission idea& satellite design	User	Mission idea and satellite design	Mission proposer	Mission idea and satellite	and satellite design to		ES	Mission idea for Deep Space Science and Exploration with Nano/Micro Satellite	Multiple satellites mission (constellatio n and	Multiple Satellites Mission (constellatio n and Formation flying)		Lunar Orbit CubeSat Mission
		Mission idea & business model	Developer		Resource provider	design	•		(inside) iSEEP (outside)	cis-lunar orbit or deep space trajectory orbit			Lunar Surface Rover Mission	Lunar Surface Rover Mission

Requirements

Theme: "Lunar Mission "

Category:

- Lunar Orbit CubeSat Mission (LOCM)
- Lunar Surface Rover Mission (LSRM)

Details of Requirements:

https://www.spacemic.net/pdf/mic9/MIC9_Mission_Requirements.pdf

Please download and use the abstract template on the website.

https://www.spacemic.net/

Process and Timeline

Application Submission: Deadline April 15, 2025

Submitted abstracts will be evaluated by review team

Title of paper and finalist(s)' name and affiliation will be published on the website.

Final Paper Submission: August 25, 2025

Submitted final paper will be distributed to review team for evaluation

Presentation in Japan: November 1, 2025

at the 11th UNISEC-Global Meeting (in-person)

Evaluation Criteria

Originality	Novel concept not yet realized or proposed, or a new implementation of an existing capability or service (25).
Impact	Impact on society / Potential to expand scientific knowledge / Strengthen deep space mission motivation (25).
	Technical description and solutions (20).
Engineering	Operational (protocol, communication and interaction during experiment) (15).
Feasibility	Programmatic (realistic- cost, development schedule, infrastructure requirements) (15).

Awards/Prize

1st Place

300,000JPY(about 2,000USD)

2nd Place

100,000JPY(about 667USD)

Student Prize

50,000JPY(about 333USD)

IAA Award

%1USD=150JPY

Finalist Presentation (1/2)

Title	Presenter
Exploring Lunar Ionosphere Characterization through Multi- CubeSat Occultation with Ranging Technology and Radiation Environment Analysis	YiYu Chang, Yuhsiu Tien, and Chieh Lung, National Central University, Taiwan
SELENE (Spectral Evaluator and Lunar Energetic-radiation Notification Experiment): A Lunar CubeSat constellation for evolving characterization of Lunar regolith and exosphere, with an experimental radiation forecasting system.	Izaak Cerneaz, Charles Ward, Sam Magarey, Quenton Yeo, The University of Sydney, Australia Will Vallis, Spiral Blue and The University of Sydney, Australia
Rover for In-Situ Umzi eNyangeni – No 1 (RISUN-1)	Dirk Slabber , isiLimela Space Systems, South Africa
Sat-GPT: Investigating Adaptive AI Performance in a Radiation- Intense Lunar Environment	Grace Bruce, Mark Buddee, Alec Cook, Rishi Deshpande, Ashley Hanna, Cameron Mitchell, Isabella Tooher and Sophia Wood, The University of Sydney, Australia
Taiwan-India Lunar Dust Analysis (TILDA) Mission	Ying Liao , National Taipei University of Technology, Taiwan

Finalist Presentation (2/2)

Title	Presenter			
SLINQI – Stellenbosch Lunar Interferometric Network for Quasistatic Imaging	Jandré Frey, Russouw Grobbelaar and Nortier Geyer, Stellenbosch University (SLINQI), South Africa			
LUNar ATmospheric Investigations with Cube-Sats (LUNATICS)	Kelly Chen, Ellie Deveson, Joshua Dickford, James Hocking, Jasmine Khuu, and Aum Mehta, The University of Sydney, Australia			
Lunar Multi-Rover Lava Tube Exploration (LuMEX)	Yunus Emre ÖZDEMİR and Elif Irmak KAYNAR, Middle East Technical University, Turkiye			
CubeSat Mission Concept for TREED (The REceiver Exploring Darkages)	Takato Hatae and Yojiro Yamashiro , The University of Tokyo, Japan			
VISTA-PIPR Virtual Immersive Sensing and Terrain Analysis for Polar Ice Prospecting Rover Mission	Abdulla Hil Kafi, Yuzuki Fukata, Taichi Nakamura and Kosuke Iwatsu , Kyushu Institute of Technology, Japan			

Submissions

- 25 Abstracts from 14 countries
- 10 Finalists and 2 Semi-finalists from 7 countries
- Constellations or single satellites of 2U to 12U CubeSats in Lunar 100 km polar orbit
- Swarm of 2.5 kg or single 10 kg Lunar Rovers
- Payloads of Hyperspectral imagers, Multispectral imagers, LiDAR, Dosimeters, Dust particle detectors, Mass Spectrometers, Phase Array antennas, etc.
- Missions to Lunar surface or Lunar orbit

https://www.spacemic.net/

MIC Office info@spacemic.net

c/o UNISEC Office

2-3-2 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan

Tel: +81-3-5800-6645

