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Scientific Motivation

DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake
Regions)

Scientific objectives

to study the ionospheric disturbances in relation to the seismic activity and to
examine the pre- and post-seismic effects,

to study the ionospheric disturbances in relation to the volcano activity,

to survey the ionospheric disturbances in relation to the anthropogenic activity,
to contribute to the understanding of the generation mechanism of these
disturbances,

to give a global information on the Earth electromagnetic environment

Note:

Although seismic effects were the “primary goal”, many obtained results are
related to anthropogenic activity — and many to lightning-related whistlers and
natural plasma waves




Spacecraft Parameters

e Launched on 29 June 2004
e Mission ended in December 2010
e Microsatellite (~130 kg)

e Sun-synchronous orbit
(13 orb./day; ~10:30 and 22:30 LT)
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Instruments Onboard

* ICE

three electric sensors from DC up to 3.5 MHz
 IMSC

three magnetic sensors from a few Hz up to 18 kHz
 |AP

ion analyzer
 IDP

energetic particle detector
* ISL

Langmuir probe

* RNF
Neural network for whistler detection




ULF (0-15 Hz)
Burst + Survey: waveforms of 3 electric field components

ELF (up to 1250 Hz)
Burst: waveforms of 3 electric and 3 magnetic field components
detailed wave analysis possible

VLF (up to 20 kHz; strong transmitter signals above detectable due to aliasing)
Burst: waveform of 1 electric and 1 magnetic field component

Survey: spectra of 1 electric and 1 magnetic field component (Af ~ 20 Hz, At~ 2 s)
magnetic field data suffer from onboard interferences

HF (up to 3.175 MHz)

Burst: ~0.6 ms long waveforms at selected times
Survey: on-board calculated spectra (Af ~ 3.25 kHz, At~ 2 s)



Plasma Measurements 7

ISL Electron density (Ne)
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Energetic Particle Measurements

* 70 keV —2.5 MeV
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Automatic Whistler Identification

Number of identified whistlers in a given time-interval (At ~ 0.1 s) and dispersion class
Runs on-board, uses high-resolution data which are not transmitted to the ground
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Existence, as well as a possible mechanism of generation, are still unclear
A case study cannot confirm/deny such effects => statistics (still) needed

Spacecraft can cover the entire Earth's surface, getting into the vicinity of many
earthquakes
Problems:

1. Strong natural background

2. Signal should propagate through multiple layers T

What point on the Earth’s surface does the spacecraft “see”?




How to Account for Natural Variability (1)

Situation “close to” vs. “far from” earthquakes
- problematic when the “natural background” depends on the position

Number of values exceeding predefined thresholds
- the threshold definition is rather arbitrary

Control orbits
- difficult to be aware of possible biases (e.g., it is never exactly the same location)

Difference from mean larger than (some number of) standard deviations
* “when we want to find out what is exceptional, we must know what is normal”

* requires data processing in two steps and large amount of data measured
1. calculate mean value and standard deviation at a given place under given conditions
2. evaluate data measured at the time of earthquakes

- the distribution of values is hardly ever Gaussian-like



How to Account for Natural Variability (2)

* Probability (“normalized intensity”)
» Represents the distribution of values in the form of a histogram (not only 15+2" moments)

 Step1:

Values at a given place under given conditions

All data used when constructing this distribution

Represented by a multi-dimensional matrix

Possible parameters: wave frequency, latitude/longitude, magnetic local time,
geomagnetic activity, season, ... E——— —

In each cell there is a histogram of measured values «




How to Account for Natural Variability (3)

Step 2:
Measured value => value of cumulative distribution function (i.e., probability of

occurrence of values less than or equal to the measured one)

Obtained “cumulative probabilities” organized wrt: 0'4:
v’ time to/from an earthquake
v' distance from an earthquake
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Normalization (separately for each bin)

=> “normalized probabilistic intensity”, N(0;1)
Changes related to seismic activity and their
statistical significance can be evaluated
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Seismic Effects: VLF Wave Intensity (1)
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* Within 330 km of the earthquakes shallower than 40 km
* Nighttime only

Némec et al., GRL, 2008
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1.7 kHz ~

Earth-ionosphere waveguide cut-off frequency => changes in the waveguide (?)
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Seismic Effects: lonospheric Density (2)
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e Post-seismic effect observed

Yan et al., JGR, 2017
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Conclusions G

« DEMETER spacecraft can be considered very successful
* Not only seismic-related phenomena but also anthropogenic + magnetospheric

* Natural “background” is highly variable and identification of (small) seismic
effects is tricky

* Elaborated statistical analyses needed

* The existence of seismic-related effects (and particularly precursors) is still
qguestionable (I think) — on the edge of statistical significance

* Scientifically tempting...



