Aerospace Engineering at Universidad del Valle – More tan 10 year of challenges and achievements.

Joao Luis Ealo C. Ph.D School of Mechanical Engineering Universidad del Valle Cali - COLOMBIA

OUTLINE

- Brief presentation of the Universidad del Valle and its Faculty of Engineering.
- Graduate Program in Aerospace Engineering.
 - Numbers and projects.
- Research line: Acoustic Technologies for aerospace applications
 - High-power vortex beams for angular momentum transfer (acoustic radiation torque).

Universidad del Valle in Numbers

• Institutional video (www.univalle.edu.co)

Academic pr	ograms 34	8
-------------	-----------	---

Cali	205
Undergraduate	76
Technological Degrees	9
University Degrees	67
Graduate Specialization Medical & Surgical Specialities	129 26
and Master Degree	83
Doctoral Degrees	20

Enrolled Students	32450
-------------------	-------

Level of Education Undergraduate Technological Level University Level	29512 4866 24646
Graduate Specialization Medical & Surgical Specialities	2938 427
and Master Degree Doctoral Degrees	1953 558

Professors	
Dedication TCE Complete Partial	876 123
Professors Men Women	999 666 333

Faculty of Engineering in Numbers

STUDENTS

- 152 PhD students
- 399 master students
- 71 specialization students
- 9695 undergrads

(93% from low income families)

- 10 engineering schools
- 1 research institute
- 30.000 alumni
- 48 research groups
- 195 professors (tenured)
- 73 laboratories

Master Program in Aerospace Engineering.

- Created in 2009 as an initiative from Colombian AirForce FAC.
- Duration: 4 semesters
- 14 Professors (11 Ph.D, 3 M.Sc) and 4 engineering schools involved.
- Aimed to aerospace, aeronautical, mechanical and electronic engineers and similar academic backgrounds.
- Research lines:
 - Aerodynamics and Propulsion
 - Aerospace materials and structures.
 - Navigation and Automatic Control.
- Research Groups/Team:
 - IDEXA Prof. Jairo Valdés
 - Industrial Improvement (GIMI) Prof. Fernando Casanova
 - G7 Prof. Peter Thomson
 - Remote Perception (GIPER) Prof. Francisco Hernández
 - Energy conversion and propulsion revolution (Impetus Indomitus) Prof. Guillermo Jaramillo
 - Industrial Control Prof. Esteban Rosero

Equipo de Investigación en Desarrollo y Exploración Aeroespacial

Master Program in Aerospace Engineering.

- 16 graduates, 5 current students.
- Alumni: 3 Ph.D, 2 current PhD students, 4 at Colombian Air Force - FAC. Most of them working in research and development, 1 independent consultant.

COLLABORATORS and PARTNERS

Some master's thesis titles.

- 1. Angular momentum estimation transferred by an acoustic vortex beam
- 2. Defect detection in composite materials using Lamb waves.
- 3. Geostationary orbit for the satellite FACSAT 1.
- 4. Determination of an operational commercial orbit for the satellite mission FACSAT 2.
- 5. Numerical Modeling of the combustion process for hybrid rocket engines
- 6. Design of high-power vortex beam using ultrasonic vibrations.
- 7. The Ultrasonic Radiation Force and its potential for modal analysis.
- 8. Implementation of the random vibration standard test for environmental verification of micro satellites (NASA-GEVS).
- 9. Design and evaluation of Nonlinear control strategies for attitude control of a CubeSat in orbit.
- 10. Design and implementation of an omni-directive microstrip antenna with circular polarization for rocketry applications.

Acoustic Technologies for aerospace applications: vortex beams for angular momentum transfer

- The constant phase surface of the beam is a helicoid.
- There exist a phase singularity at the center of the beam
- They can be used for particle/object manipulation, alignment, ultrasound communications.
- They exhibit self-reconstruction capacity.
- They transport angular momentum which can be transferred to matter.

Acoustic vortex beams

- Vortex beam generation (helical surface, multitransducer, active diffraction gratings)
- Acoustic-Structure Interaction (Particle manipulation & angular momentum transfer)

Vortex Beam Generation Technologies

MT390UV Acoustics and Vibration Lab. Universidad del Valle Colombia

2. Ferroelectret-based developable surface

2. Ferroelectret-based developable surface

generators

Outer Diameter : 40 mm Inner Diameter: 5 mm Cone Angle: 20 degrees Helicoid Pitch: λ @ 70 kHz

4. Experimental Resultts: 20° - 70 kHz

3. ELECTROACTIVE DIFRACTING GRATINGS

ELECTROACTIVE DIFRACTING GRATING

Focused Active Grating Transducer

Arquimedean Spiral Transducer

Arquimedean Spiral – Two Arms

Acoustic field as a function of frequency

Transverse plane measured at 20 mm from the ADG.

The focal point is shifted as frequency increases!!

Experimental simulation results

For frequencies between 130 kHz and 170 kHz, the focal points shifts from 20 mm to 32 mm, aproximately

4. High-power vortex beams

Acoustic Vortices (AV)

- The constant phase surface of the beam is a helicoid.
- There exist a phase singularity at the center of the beam
- They can be used for particle manipulation and alignment.
- They exhibit self-reconstruction capacity.
- They transport angular momentum which can be transferred to matter.

Ultrasonic Vibrations

- The sonotrode structure operates at longitudinal vibration and flexural modes between 20 kHz and 100 kHz.
- Produce high power ultrasonic waves in air.
- Have multiple industrial applications, e.g: ultrasonic cleaning, ultrasonic welding, ultrasonic defoaming.

30th Virtual UNISEC – Global Meeting

Sonotrode-based prototype to produce AV in air

- Perhaps simpler than using a multielement array. But more complex than a monoelement transducer.

High Power Ultrasound

2. Prototype Design 2: Flexural Radiating Surface

UNISECGLOBA

Change in the vibration mode for different t/h factors and D = 120 mm.

- Find the desired mode at the operation frequency of the Langevin for a plate of thickness *h* and diameter *D*.
- 2. Add the helical section of pitch *t* avoiding a high distortion of the selected mode
- 3. Use *t/h* < 0.2 as a rule of thumb.

Idealy, we are generating concentric vortices, emulating a Bessel beam.

2. Prototype Design 2

30th Virtual UNISEC – Global Meeting

3. Experimental Characterization

- Vibratory pattern characterization (LDV)
- Acoustic field measurement
- Transferred angular momentum
- Acoustic Torque Estimation on flat cork disks.

 I_{disk} : Moment of inertia of the disk sample ω_{ss} : Angular velocity of the disk in steady state. τ : Time constant of the first order response of the disk velocity.

Acoustic Results.

Fabricated Prototype

Measured field at 40 mm from the source

Experiments

Simulation

Acoustic Results.

2. Results: Prototype 2.

- Disk diameter: 40 mm
- Moment of inertia : 4.25 gr-cm^2
- Maximum Transferred Angular Momentum: 173.6 gr-cm^2/s.
- Applied Voltage: 100 Vp.
- Disk location: 40 mm from the source
- Estimated Acoustic Torque: Ta = 17.3 dyn-cm.

4. Conclusions and Future Work

- Several alternatives for vortex beam generation are available. They can be used in air and water.
- As long as the helical geometry vibrates in phase, without significant variations in its radiating surface, a good quality vortex is obtained.
- Sound pressure levels of up to 148 dB has been obtained at 4 cm from the source, at 180 Vp.

4. Conclusions and Applications

- *Higher topological charges* are possible by easily modifying the geometry of the radiating surface.
- Particle trapping and alignment are possible.
- Acoustical potential applications: ultrasonic propulsion, attitude control, modal analysis, mechanical sample characterization, among others.

Thank You

joao.ealo@correounivalle.edu.co

