

Geomagnetic Observation by Yotsuba-KUlover

Shuji Abe^[1], Teiji Uozumi^[1], Akimasa Yoshikawa^[1], Akiko Fujimoto^[2], and Kentaro Kitamura^[2]

[1] International Research Center for Space and Planetary Environmental Science (i-SPES), Kyushu University[2] Kyushu Institute of Technology

Outline

Overview About Yotsuba-KUlover Satellite specifications Project organization diagram Schedule Magnetic field observation mission **Observation target** Mission criteria Devices **Deployment mechanism** Summary

2

2023/01/21

Overview

About Yotsuba-KUlover

- Student-led Cubesat Development Project
- Composed of undergraduate students from Kyushu University and Kyushu Institute of Technology
- Collaboration between different faculties

YOTSUBA-KULOVER

 Adopted as a program by the Ministry of Education, Culture, Sports, Science and Technology, between 2021-2023

Satellite specifications

Name	YOTSUBA-KULOVER
Size	2U
Launch	Release from ISS
Mission	Magnetic field observation
	Aurora observation by optical camera
	Charging observation in LEO
	Boom deployment mechanism to improve magnetometer observation accuracy

YOTSUBA-KULOVER

Project organization diagram

YOTSUBA-KULOVER

the 29th Virtual UNISEC-Global Meeting

7

Schedule

2021/Nov	Project start	
2022/Feb	Science Seminar	
2022/Mar	Science Seminar	
	MDR	
2022/Apr	Conceptual Design	
2022/Oct	PDR	
	EM development start	
2023/Feb-Mar	Factory Tour	
	Science Seminars	
2023/Apr-	CDR Safety Review Phase 0,1,2 Science Seminars	
2023/Oct	FM development complete	
2023/Nov	Safety Review Phase 3	
2024/Mar	Deliver to JAXA	

Member at 2022/Mar on MDR (in Kyutech)

・第12号科学衛星あけぼの

打上げ日時:1989年2月22日 8時30分形状:場所:鹿児島宇宙空間観測所(内之浦)高さロケット:M-3SIIロケット4号機4枚質量:295kg八角軌道高度:30m近地点275km遠地点10500km動道傾斜度:75度軌道種類:長楕円軌道

ジ状: 高さ100cm 対面寸法126cm 4枚の太陽電池パドルがついた 八角柱型 30m長のアンテナ 5m・3mの伸展マストを備える 40

Science seminar about scientific satellite in Japan by Prof. Obara (in virtual)

2023/01/21

Magnetic field observation mission

9

Observation target

- Geomagnetic storm
 - The geomagnetic storm is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave and/or cloud of magnetic field that interacts with the Earth's magnetic field.
- IHFAC
 - The Inter-Hemispheric Field-Aligned Current is one of the major current systems causing changes in the geomagnetic field at low and middle latitudes.
- Other phenomena
 - Substorm, geomagnetic pulsations, etc

A sketch of the magnetosphere (modified from Kivelson and Russel (1995)

Distribution of the dusk-side IHFAC of the Fukushima's model type, and the illustration of IHFACs polarity(Ranasingh et al., 2021)

Mission criteria

Level	criteria
Minimum	Acquire minute averaged magnetic field data without missing, and receive it at ground stations
Full	Analyze the I-minute magnetic field data and determine the period which has interesting changes. Download the I-second resolution magnetic field data during its period by command from the ground station.
Extra	Acquire magnetic field data with 0.1nT resolution considering the removal of magnetic noise emitted from the satellite itself.

Communication Block Diagram

Devices

Name	Spacemag-Lite
Manufacturer	Bartington instrument
Size	90.2mm × 95.9mm (Probe:20mm × 20mm × 20mm)
Weight	Board:67g Probe:42g
Power consumption	0.2W(Typical)
Measuring range	±60µT
Voltage input	5.0V and 3.3V

Magnetometer board(black) and probe(cream)

BB model of magnetometer data processing unit (A/D converter and PIC)

Initial result of comparing spacemag-lite and groun-based magnetometer MAGDAS used for scientific purposes

YOTSUBA-KULOVER

2023/01/21

Boom deployment mechanism

- To avoid noises from the current loop and digital circuit, the magnetometer probe must separate from the payload itself.
- Yotsuba-KUlover plan to install a panel type boom deployment system on the side.

Summary

- Yotsuba-KUlover is an interdisciplinary project between science and engineering in which students from Kyushu University and Kyushu Institute of Technology collaborate to develop a satellite.
- A 2U CubeSat will be developed in 18 months, and it will be released from the ISS in FY2024.
- The magnetic field observation missions aims to conduct a full-scale science with a low threshold development approach using COTS magnetometers.
- Currently, Engineering Model is being prepared.

2023/01/21

end

