14th UNISEC-GLOBAL Virtual Meeting - Opening Remarks -

Today's main theme is "Lost Dark Sky,"

Let's talk about "Entropy" and its relationships with global issues.

SO.....

Shinichi Nakasuka University of Tokyo

Entropy and irreversible process

- Entropy (in Thermodynamics, Statistics, Information theory) is related to number of possible states, which indicates the level of randomness, unpredictability, uselessness, etc.
- 2nd Law of Thermodynamics: Entropy of isolated (closed) systems cannot decrease with time, and they always arrive at a state of thermodynamic equilibrium, where the entropy is highest.

Total entropy always increase

Outcomes of increase of entropy

Many global issues can be interpreted as "Entropy Crisis"

Entropy and human being - with information theoretic entropy -

- In information theory, if you get to know something, entropy decreases. ("unpredictability" decreases)
- Man grows by taking negative entropy ("negentropy")
 - From food and water to structured body
 - Get knowledge to increase prediction capability
 - In order to decrease entropy, "human system" is <u>made open</u> and throws away generated entropy to the surroundings
- Human being is very sensitive to the increase of entropy(?)
 - Entropy increasing environment makes man nervous, uneasy and desire to escape
- "Curiosity" is "the desire to reduce internal entropy"
 - In some islands in Pacific Ocean, some people disappear on ships every year even though there is enough food on islands
 - Human being intuitively desires to go to space because he wants to reduce internal entropy or Earth entropy gets larger(?)

How to mitigate Earth entropy increase

- Any activities to reduce entropy generates <u>additional entropy</u> and total increase will be larger than the case "nothing is done"
- 2nd Law of Thermodynamics: Entropy of *isolated (closed)* <u>systems</u> cannot decrease with time.

Large energy: 1.2x10¹⁴ kW Low entropy: 2.2x10¹⁰kW/K

- Information

small amount of particles

Utilize solar

Radiation into space energy more High entropy: 4.9x10¹¹kW/K (human oriented < 0.02%) Space activities' objective is to accelerate more exchange between Earth and Space in order to reduce entropy inside Earth

Open System

S

А