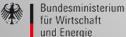


Computer Science VII: Robotics & Telematics


UWE-4: In-orbit experience of the first 1U CubeSat employing the electric propulsion system NanoFEEP

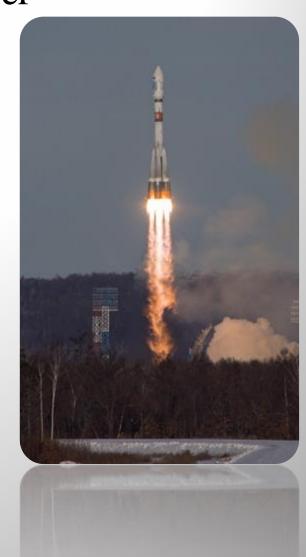
Alexander Kramer

University Würzburg

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

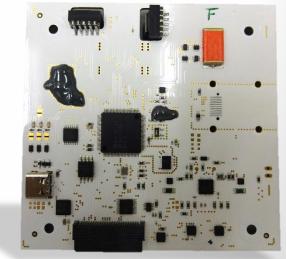
ür Wirtschaft

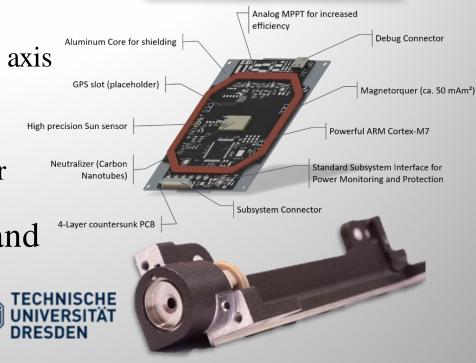


Computer Science VII: Robotics & Telematics

LEOP & Commissioning

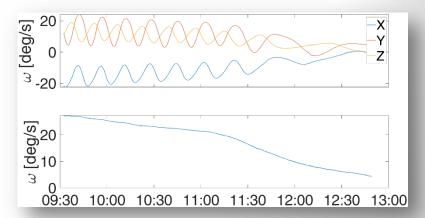
- Launch in Vostochny, Russia, December 27th 2018
- ~2h: First signal received in Russia
- ~6h: Two-way communication in Wuerzburg
- 30th January: First detumbling experiment
- 31st January: Calibration of magnetometers
- Afterwards: Thruster experiments

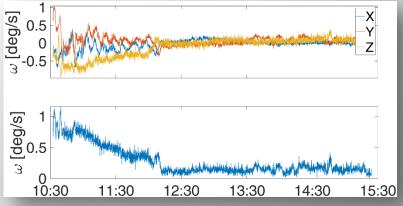



Computer Science VII: Robotics & Telematics

Attitude and Orbit Control System

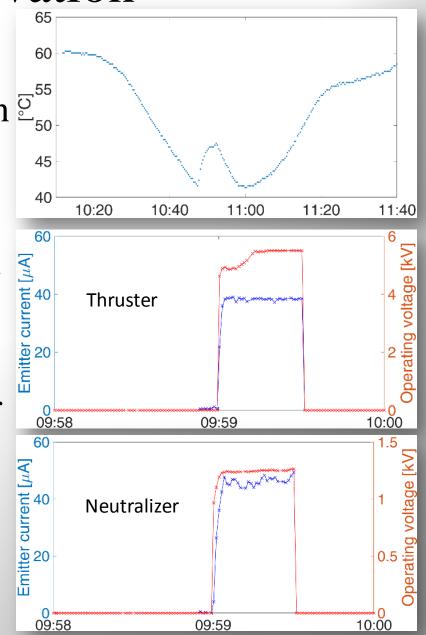
- Sensors:
 - Low power 9-axis IMUs
 - High precision sun-sensors on panels
- Actuators:
 - Magnetorquers on each panel
 - Magnetic moment: 0.1 Am² per axis
 - NanoFEEP thrusters in each facing the same direction
 - Thrust: Up to 20 μ N per thruster head
 - Hybrid control with torquers and thrusters envisioned




Computer Science VII: Robotics & Telematics

Detumbling using pure magnetic control

- B-Dot controller activated on 30th January for 3h
- Satellite rotation rate went down from 27deg/s to less than 5deg/s
- Gain **k** in control law $\dot{\omega} = -k\omega$ was increased from 0.05 to 0.15 after 1.5h
- Activated again on 12th February
- At low rotation rates also performes a decline from 1deg/s to < 0.3deg/s within 100min



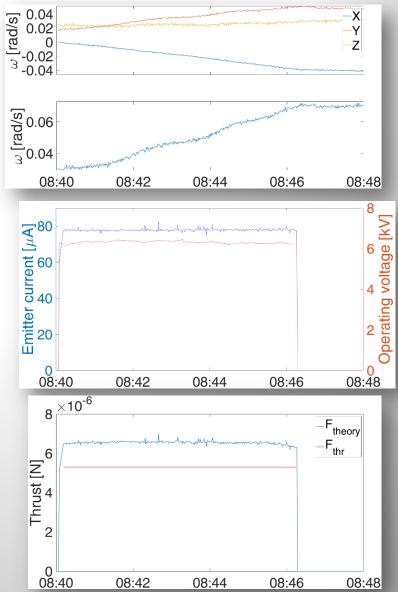
NanoFEEP activation

- Gallium propellant has to be liquefied prior to thruster activation \mathcal{D}_{50}^{55}
- Solidification of propellant during eclipse
 - \rightarrow exothermal reaction
 - → alteration in heater PI controller & heating for long duration prevented solidification
- Thruster activated @ 40µA emitter current (~ 3.6µN thrust)
 → charge loss balanced by neutralizer instantaneously

Computer Science VII: Robotics & Telematics

Thrust estimation

- Satellite detumbled to rotation rate < 0.04 rad/s
- Thruster activated @ 80µA emitter current for ~ 6min
- Thrust can be derived using Euler equation


$$M_{ext} = I\dot{\omega} + \omega \times I\omega - \mu_{res} \times B_{Earth}$$

and minimizing

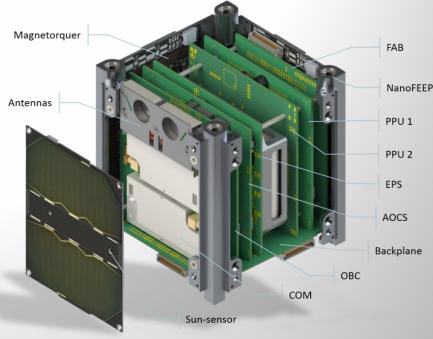
 $E = abs(M_{ext} - r_{Thr} \times F_{Thr})$

- This leads to an estimated thrust of $F = -[0.84, 0.01, 5.23] \mu N$
- Simulations prior to launch have shown that activation for ~ 10min minimizes the error in thrust estimation

 \rightarrow Future experiments

Computer Science VII: Robotics & Telematics

Thank you for your attention!



Computer Science VII: Robotics & Telematics

Lessons learned

- Check the frequency allocation within the radio amateur band before application using interference studies
 - Using jammed frequencies not only takes time for any communication task like e.g. software updates, but also for frequency coordination
- A novel sensor suite consisting several sensors covering only a certain part of the whole value range has to be calibrated and validated well in time
 - Calibrating a single sensor is not enough, because the underlying model may only be valid for a single sensor

