

KANEMATS

(Pre-workshop for the 4th Mission Idea Contest for Micro / Nano Satellite Utilisation)

UK small satellite mission provider

- owned by 99% Airbus Defence & Space 1% University of Surrey

Incorporated in 1985, employs 500 staff across facilities in the UK (Surrey, Kent, Hampshire) & US (Colorado)

SSTL – The Stats

Years+ in operation. 6 Oct 1981 to date.

SSTL satellites launched

Satellites in manufacture

Payloads in manufacture

Number of SSTL constellations deployed and under contract (DMC, RapidEye, F7, DMC3, Kanopus)

Changing the Economics of Space

As at July 2014

SSTL's fleet of small satellites

KANEMATS

SSTJ – Resource Provider into MIC

KINEMATS

Leverage SSTL's expertise to assist MIC participants through:

Mentoring – providing technical advice
 Work-shop participation
 Training & Development
 Provision of heritage platforms and subsystems

SSTL Available Resources

Full mission capability from definition through to launch, commission, operations & exploitation

4 4 10

Mission Definition and Design Sub Systems Design and Manufacturing

Assembly & Integration

Testing

Environmental Testing

Launch

Image Processing & Application

Mission Commission & Operations

KANEMATS

SSTL collaborations with Japan Space Industry include:

- **1. Mission Concept Studies**
- 2. Microsatellite Mission Training
- 3. Space Market Study & Analysis
- 4. Technical (spacecraft, platform & equipment) Studies
- 5. Subsystem provision (EM & FM)
- **5. Ground Station Provision / Training**
- 6. Down stream data service provision

KANEMATS

Japanese Missions Supported by SSTL

SLATS

JAXA / MELCO SLATS – SSTL provided Study support and is supplying GPS space receiver

ChubuSat – MHI / Nagoya Uni. SSTL's 10SP-M reaction wheel based-lined on Chubusat series

JAXA Tsukuba SDS-4 SSTL supplied 10SP-M reaction wheels

NICT SOCRATES – AES

prime. SSTL supplied reaction wheels

Tohoku Uni. Rising-2. SSTL supplied GPS receiver

SSTL Micro / Nano Platforms Provision enabling MIC participants to focus on the mission concept

SSTL Satellite Platforms

- A wide range of platforms for <u>small satellites</u>
- Many heritage missions and structure configurations
- All based on SSTL standard avionics*
 - Standard power and data interfaces
- Highly flexible and configurable, using heritage equipment and system configurations
 - S-band TM/TC, 28V power bus, CAN OBDH
 - Heritage structure configurations or new structure
 - Single string / dual or multiple redundancy avionics
 - Scalable power systems with body mounted or deployed panels
 - A range of AOCS sensors and actuators
 - Various propulsion system solutions
 - Various payload support solutions, including high speed data recorders and downlink

* SSTL is now introducing new "Fireworks" avionics on the SSTL-X series, which eventually will be rolled out across other platforms. KazSTSAT will fly this avionics set in 2016. Cubesats and GEO Commsats are special cases using largely custom avionics

KANEMATS

KANEMATS

Nano / Microsatellite Platforms

Platform	Cube-X	Nano-X	SSTL-X50	SSTL-100	SSTL-150
		Payl	oad		
Mass (kg)	<2 or <5	<4 or <9	<45	<50	<60
Power OAP (W)	<6W or <12W	<3.6W or <15W	35W 85W peak	17-24W 85W peak	<50
Volume	2U or 5U (L shaped)	12x19x19 20x20x23	53x40x43	314x257x240	Int. 25x28x23 Ext. 77x73x25
Spacecraft					
Total mass (Kg)	<7 or <11(dry)	<16 or <36(dry)	50 - 150	75-125(dry)	<180 (dry)
Volume (cm ³)	3U or 6U	12U or 27U	53x43x40	84x68x95	124x133x130
Design Lifetime	1-2 years	1-2 years	5 year	5 year	7 year

Only main platforms shown

Typical specifications

Low complexity platforms

- CubeSAT
- Nano-X
- SSTL-X50

SSTL "Cube-X" Cubesats

- Heritage: SNAP-1; STRaND (2013).
- For professional missions where a Cubesat is the appropriate nanosatellite solution
 - E.g. contractual requirements to meet certain mission objectives
 - Leverages SSTL mission engineering capabilities
 - Typically 3U, 6U, 12U, 15U, 24U or 27U form factor
 - Wide range of launch opportunities
 - Using third-party avionics where appropriate
- Leverages University of Surrey Surrey Space Centre science and technology cubesat mission programme
 - CubeSail de-orbit
 - AARest autonomous assembly & reconfiguration
 - QB50 EU thermosphere science mission

SSTL Nano-X

KANEMATS

- Scalable Nano/Microsat platform
- Targeted at very low cost, fast delivery missions
- Based on SSTL "Fireworks" avionics
- Partial redundancy in key systems

Typical platform characteristics			
Mission mass Up to 40kg			
Payload mass	Up to 20kg		
Payload power 29W (without deployable panels)			
Data interface	Up to 1 Gbps		
Pointing Control 0.1deg			
Downlink rate Up to 50Mbps			
Design lifetime	1 to 2 years		

SSTL X-50

The X50 offers a highly flexible microsatellite platform, featuring an innovative modular avionics suite, that can be scaled up or down to match the needs of a wide variety of payloads. High speed data storage and processing makes it extremely capable for high data volume applications, such as video from space and high resolution imagery.

Platform Services

Payload Accommodation & Services

Payload Mass	Scalable, typically up to 45kg
Payload Volume	Scalable, typically starting from: 0.5 m x 0.4 m x 0.3 m
Payload Orbit Average Power	Scalable, typically up to 35 W (can be increased with additional arrays)
Payload Peak Power	Scalable, typically up to 85 W (can be increased with additional arrays)
Payload FoV	Unobstructed FoV possible

System robustness	Redundant Design – no single point of failure		
Data Bus	CAN bus standard Also featuring: RS485, LVDS, UART		
High Speed Data Interfaces	GigaBit per second payload data bus direct to data storage or downlink.		
On-Board Data Storage	Standard 2 TB Optional upgrade to 4 TB		
Power Bus	28V Unregulated		
Comms	S-band Uplink	Up to 600 kbps	
System Interfaces	S-Band Downlink	Up to 2.2 Mbps	
	X-band Downlink	Up to 1Gbps	

SSTL X-50

- Targeted at low cost, fast delivery missions
- Production engineered for automated manufacture and test
 - Fast delivery (12-24 months)
 - Cost efficient for constellations
- Dual redundant avionics
 - Scalable power and OBDH
 - Gbps payload interfaces, Tbyte storage, 3-axis control
- First flight KazSTSAT in 2016

Supported Orbit Types	Sun synchronous (standard) Low altitudes supported	
	Non sun sync (optional upgrade)	
Attitude Modes	Earth Referenced (standard)	
	Inertial Reference Platforms Available	
Design Lifetime	5-7 years	
Satellite Mass	Total mass typically in the range 50 – 200 kg	
Satellite Dimensions	Typically less than 1 m ³	
Compatible Launchers	Dnepr, Falcon-1, H-IIA, Soyouz, Delta-IV	
Constant of the second s		

SSTL-150

- Dual redundant avionics
 - Scalable power and OBDH
 - 3-axis control, Agile
- Extensive heritage
 - 9 spacecraft
 - Listed in the NASA ID/IQ catalogue

Typical platform characteristics		
Mission mass	100-165kg	
Payload mass	Up to 60kg	
Payload power	50W (without deployable panels)	
Pointing Control	0.07deg	
Downlink rate	X-band, Typically 400Mbps	
Design lifetime	7 years	

231,50

279,5

SSTL-150 payload accommodation

- Internal volume ~250x280x230mm
- External volume ~770x730x250mm

SSTL-150 missions

Beijing-1 (2005)

RapidEye (2008)

TechDemoSat (2013)

Sapphire (2014)

SSTL Subsystems enabling MIC to access low-cost, heritage platform subsystem

Heritage Subsystems are available through SSTJ

- S-band TM/TC, 28V power bus, CAN OBDH
- Heritage structure configurations or new structure
- Single string / dual or multiple redundancy avionics
- Scalable power systems with body mounted or deployed panels
- A range of AOCS sensors and actuators
- Various propulsion system solutions
- Various payload support solutions, including high speed downlink and data recorders

Subsystems from SSTL

KANEMATS

Complete data handling, storage and down-link solution over X-band

A range of

reactions

and rapid

manoeuvring

wheels with oil or dry lube for fine pointing

A range of GPS receivers to suit all budgets

Hold down and release mechanism

Bi-Axis SADM

Quad confinement thruster – electric Probusion

SGR-ReSI is a remote sensing instrument design for use with: Multi constellation a) Multi frequency b) Flying on TDS-1 and to fly on Cygnss

S-band TM/TC Platform Suite

Procyon and Rigel-L Star Trackers offering 5 & 3arcsec accuracy; 4Hz and 16Hz up-date rate

MIC Participant can access SSTJ extensive capabilities

Collaborative mission design
Mentoring & Workshop participation
Platform manufacture & training
Manufacturing licenses for future missions
Platform Subsystems

Thank you

Changing the economics of space

www.sstl.co.uk

X-Band Payload Downlink 🐝 KANEMATS

- High Speed Data Recorder, HSDR
 - Virtex-4 FPGA with PowerPC & DDR2 memory
 - 16 GByte data storage
 - LVDS or SERDES 5Gbps data inputs
 - FMMU with 125 Gbytes non-volatile memory
- X-band Transmitter, XTx400
 - 10 to 500 Mbps data rate
 - 5 and 12W output
 - BPSK, QPSK or 8PSK modulation
 - Convolution or TCM encoding
- Antenna Pointing Mechanism, X-APM
 - Two-axis mechanism, slew rate <20%
 - Pointing accuracy in hemisphere <0.25°
- X-Antenna
 - Narrow beam high gain horn
 - Boresight gain of 15 or 18dBi

X-BAND DOWNLINK CHAIN

HSDR

X-BAND TRANSMITTER

X-BAND APM

Reaction Wheel Portfolio 👐 KANEMATS

A cluster of wheels can be delivered to mee specific customer requirements

10SP-M

100SP-M 200SP-M

Wheel Momentum	0.42 Nms (max)	1.5 Nms (max)	12 Nms (max)	2
Wheel Torque	10 mNm (max)	100 mNm (max)	200 mNm (max) @ 28V	
Wheel MOI	0.0008 kgm ²	0.0028 kgm ²	±5000 rpm	OP
Wheel Speed	±5000 rpm	±5000 rpm	±0.4 rpm	
Speed resolution	±0.0088 rpm	±0.0088 rpm	0.6 rpm (rms) 0.043 Nm/A	
Speed control	<0.1 rpm (rms)	<0.05 rpm (rms)	5 Hz (tvp)	
Update rate	5 Hz (typ)	5 Hz (typ)	3-Phase Brushless DC	105
Mass	0.96 kg	<2 kg	4-Quadrant PWM Current Loop	inte
Dimensions (max)	101 x 109 mm (diam	120 x 120 x 100 mm	5.2 kg	
Power	5 V, 24-32 V supplie	5 V, 24-32 V supplies	240 mm Diameter x 90 mm Height	

10SP-M RW with integral electronics

GPS Receivers

GNSS receivers provide critical navigation telemetry to the spacecraft bus: position, velocity, and GPS time. They also provide pulse per second (PPS) signals that are used by the OBC to ensure synchronisation

Space GNSS Receiver (SGR) on a card

12 x L1 channels, single antenna Low power and mass:

- Power: 0.8 W @ 5V
- Mass: 45 grams (inc screens)
- Dimensions: 70 x 45 x 10 mm

SGR-07 12 x L1 channels, single antenna Power: 1.6 W @ 28V Mass: 450 grams Dimensions: 120 x 78 x 48 mm TTC interface: CAN-SU RS422 Active patch antenna included

Professional-grade multi-antenna Space GPS receivers 24 x L1 channels SGR-10: Two patch antennas included SGR-20: Four patch antennas included Antenna configurations:

- Co-visible: Antennas mounted on space-facing facet for rapid acquisition
- Extra-visible: Antennas mounted on opposite facets for extra visibility

TTC interfaces: CAN-SU & RS422 Active patch antennas included

Typical Performance for SGR-07, -10, -20

- Position to 10m (95%)
- Velocity to 15cm/s (95%)
- Time to 500ns
- Time To First Fix (warm) 70 90 s
- Time To First Fix (cold) 210 300 s

SGR-ReSI & GNSS Receivers

GNSS-based Remote Sensing Instrument – FPGA-based receiver with on-board processing capability. Can also be re-programmed in-orbit to upgrade capability.

Applications include:

1. Radio Occultation

- 2. GNSS Reflectometry
 - Detecting GNSS signal reflected off the Earth's surface, to obtain geophysical data
 - Measurable parameters may include:
 - Ocean roughness
 - Ice edge sensing
 - Soil moisture

Will fly on CYGNSS, The University of Michigan's 8nanosatellite constellation, designed to measure hurricane formation

SGR-Axio innovative design derived from the ReSI instrument. The SGR-Axio to be configured to support

- GNSS signals from: GPS, Galileo and Glonass
- Reconfigurable co-processor
- Support for up to 4 antennas
- 24xL1 channels
- Power / Mass: ~ 4W / 1Kg
- CAN-SU / RS422 interface

Solar Array Deployment Mechanism

The SADM provides a continuous transfer of solar array power and signals to the spacecraft while sun tracking on a small Low Earth Orbit (LEO) spacecraft. This technology has been derived from technologies developed on the Antenna Pointing Mechanism (APM).

The SADM can be supplied as a single sun tracking axis or Bi-axis (sun tracking axis +

trim axis) and with or without drive electronics.

Contraction of the			and the second second
Physic	alch	aracte	ristics
1 myone		anacce	

	Single Axis SADM	Bi-Axis SADM
Dimensions (mm)	Ø 157 x h 160	Ø 203x h 240
Power Consumption (28 V _{BUS})	3W	3.6W
Mass (kg)	<3.3Kg ± 5%	<5.25Kg ± 5%
Radiation (SADE)	5 kRad (Si)	5 kRad (Si)
Random vibration	8.35G _{rms} in all axes	8.35G _{rms} in all axes
Lifetime	6 years LEO Orbit (< 800Km)	6 years LEO Orbit (< 800Km)
Temperature	-30° C to +70° C operating -40° C to +80 ° C non-operating	-30° C to +70° C operating -40° C to +80° C non-operating
Number of Qualification Cycles	>70 000 full rotation of 360°	>70 000 full rotation of 360° >4000 Back & forth between ±60°

Cost-effective star trackers for missions with med- and high accuracy attitude determination requirements

	Procyon	Rigel-L
Attitude accuracy (1-σ)		
Bias	X/Y < TBD arcsec	X/Y < 3.0 arcsec
	Z < TBD arcsec	Z < 3.5 arcsec
Relative Accuracy	X/Y < 5 arcsec	X/Y < 3 arcsec
	Z < 50 arcsec	Z < 25 arcsec
EOL for a single CHU	Tracking rate @ 0.1 deg/s	Tracking rate @ 0.5 deg/s
	CHU temp @ 15 degC	CHU temp @ 15 degC
	Operating at 4 Hz	Operating at 4 Hz
Update Rate	1Hz – 4Hz	1Hz – 16Hz
Maximum tracking rate	2 deg/s, 2 deg/s/s	6 deg/s, 2 deg/s/s
Exclusion angles (standard	Sun: 30 deg	Sun: 30 deg
baffles)	Earth: 30 deg	Earth: 29 deg
	Tolerant to Moon in FOV	Tolerant to Moon in FOV
Interface	CAN/RS422/ RS485	CAN/RS422/ RS485
Power	Supply 16-50V	Supply 16-50V
Single CHU	10W at 28V	10W at 28V
Double CHU	12W at 28V	12W at 28V
Radiation	< 10kRad	< 10kRad

CHU – based on APS technology

DPU – miniaturised OBC750

S-band TM/TC Platform Suite 👄

QUADRIFILAR

HERITAGE S-BAND RECEIVER

Data rate: 9.6 kbps or 19.2 kbps Modulation: CPFSK TTC interface: CAN-SU

FlexRx – Space qualified on TDS-1

- Flexible, compact S-Band Receiver
 Data rate: 9.6 600 kbps
 Modulation: CPFSK, BPSK + others
- Dimensions: 190 x 135 x 31 mm
- Mass: < 0.9 kg •
- TTC interfaces: CAN-SU & RS422

S-BAND PATCH AND QUADRIFILAR HELIX ANTENNA

KANEMATS

HERITAGE S-BAND TRANSMITTER

Data rate: 9.6 kbps - 8 Mbps Modulation: BPSK or QPSK Coding: ¹/₂ rate k=7 convolutional 200 mW RF output power **Optional HPA**

• 2 W heritage unit

• 4 W heritage unit TTC interface: CAN-SU

Electric Propulsion (EP) - Quad Confinement Thruster (QCT): SSTL / SSC Collaboration

Key Competitive Capabilities & Target Mission Scenarios:

- Thruster vector control without moving parts
- Low-power operation
- Low-cost and low-power, small satellites
- Replacement for inert gas and resistojet technology
- QCT-200 is baselined on the SSTL NovaSAR mission 2016 launch

Technology	Target Performance	Commercial need
QCT-40	 Input power: 40W Propellant: Various (Xe, Butane, H2O, etc) Specific impulse: 250s Thrust: 3.3mN Thrust efficiency: 10% Power/Thrust: 12.1 W/mN 	Candidate technology for replacement of the heritage Xenon resistojets on SSTL 50kg - 200kg platforms.
QCT-200	 Input power: 200W Propellant: Xenon Specific impulse: 1200s Thrust: 10.2 mN Thrust efficiency: 30% Power/Thrust: 19.6 W/mN 	Low cost and low power EP alternative for the growing small satellite industry (100kg - 500kg platforms).
QCT-1500	 Input power: 1500W Propellant: Xenon Specific impulse: 1600s Thrust: 95.6 mN Thrust efficiency: 50% Power/Thrust: 15.7 W/mN 	Low cost alternative to Hall effect thrusters and gridded ion engines for GEO platforms.